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Quantum Error-Correction
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Basic requirement

knowledge about the interaction between the system and the environment

Common assumptions

• no initial entanglement between system and environment

• local or uncorrelated errors, i. e., only a few qubits are disturbed

=⇒ CSS codes, stabilizer codes

• interaction with symmetry

=⇒ decoherence free subspaces/subsystems
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Quantum Error-Correction Codes

Constructions

• CSS codes, stabilizer codes [Calderbank, Gottesman, Rains, Shor, Sloane, Steane]

based on classical error-correcting codes

• non-additive codes [Rains et al. 97]

a non-additive code C = ((5, 6, 2)) exists, but no stabilizer code

• Clifford codes [Knill 96, Klappenecker & Rötteler 01]

generalizing stabilizer codes

Algorithms

• quantum circuits for encoding & syndrome computation

“easy” for CSS codes, for additive codes [Cleve & Gottesmann 97, Grassl 01]

• various algorithms for cyclic codes [Grassl et al. 99, Grassl & Beth 99]

• encoding based on interaction graphs [Schlingemann & Werner 01]
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Encoder Based on Quantum Shift-registers
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Encoder for the quantum Reed-Solomon code [[21, 3, 5]] using quantum shift registers for the

multiplication by g̃(X) = X + 1 and g
⊥ = αX3 +X2 + α2X + 1.
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Graph Codes

The ingredients:

• alphabet A =

�

m
p of size α := |A| = pm

• weighted undirected graph Γ on k + n nodes

• symmetric bicharacter χ on A×A

Definition: A graph code is spanned by the vectors

|x〉 =
1√
αn

∑

y∈N

( k+n∏

i,j=1
i<j

χ(zi, zj)
Γij

)
|y〉,

where x ∈ Ak and z = x+ y ∈ Ak ×An.

for qubits:
k+n∏

i,j=1
i<j

χ(zi, zj)
Γij corresponds to the phase due to couplings σ

(i)
z σ

(j)
z
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Graph Codes and Stabilizer Codes

[Schlingemann & Werner; Grassl, Klappenecker & Rötteler]

“=⇒” Each graph code is a stabilizer code.

Example:

The graph code corresponding to the wheel W7

ΓW7
=




0 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 0 0 1 0 1

1 1 0 0 0 0 1 0




is a [[7, 1, 3]] stabilizer code (which is not GF (4)-linear).
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Graph Codes and Stabilizer Codes (contd.)

“⇐=” Each stabilizer code over

�

q corresponds to a graph code (but the graph is not unique).

Example:

The CSS code [[7, 1, 3]] yields to non-isomorphic graphs

=⇒ alternative interaction graphs for the encoding
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Fault Tolerant Quantum Computing

see e. g. [Aharonov & Ben-Or, Knill & Laflamme, Preskill, Steane]

• encoded operations: map codewords to codewords

• prevent spreading of errors
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local operations transversal operations

• fault tolerant operations also for error correction

=⇒ requires supply of “fresh qubits” and

fault tolerant preparation/testing of states
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Concatenated Codes

Knill et al., Resilient quantum computation 377

h=1
h=2

Ψ

ε

Error  probability

Cε2 C 3ε 4

Figure 7. Concatenation of the seven-bit code. If the error rate is ε for the qubits, the encoding
will gives a rate of C

2
h−1

ε
2

h

for the hth level of the hierarchy.

is given by the number of pairs of errors that can occur within the region of influence
times the square of the probability of error at this level. In networks such as those
used in this work, the number of error locations in the region of influence is bounded
by the number of qubits required for the largest gates (here this is the controlled-
NOT, with 14 qubits), times the number of operations affecting a qubit before an
error at a given location can be eliminated (here this is estimated as 7 ∗ 6 ∗ 2 + 2,
where 7 is (close to) the average number of operations contributing to a qubit in the
cat state generator, 6 is the number of syndrome bits, 2 is the average number of
attempts to measure the syndrome and the additional 2 is for the correction step
and the encoded operation). For our network we get 14∗86 = 1204 operations, which
yields a probability of error at the next level of less than 106p2, which is less than p
if p < 10−6. This is close to what will be established by the more formal arguments
below.

Our analysis consists of establishing the error behaviour inductively for each level
of the concatenation hierarchy. To do so we exploit the properties of stabilizer codes
and the quasi-independent error models. We first prove the threshold theorem for the
normalizer group and the quasi-independent stochastic error model. We then show
how it can be extended to the monotone model and to a complete set of operations.

Useful properties of stabilizer codes are:
(i) recovery operations and encoded normalizer operations are implemented using

normalizer operations only;
(ii) the syndrome is completely determined by the standard error operations

applied to the qubits;
(iii) if the errors in different error locations during fault-tolerant recovery are

instantiated by standard errors and the incoming state’s syndrome is given, then the
outgoing state’s syndrome is determined;

(iv) standard errors applied to an encoded state whose syndrome is given induce
a standard error on the encoded state.

Proc. R. Soc. Lond. A (1998)

• many levels of error correction

=⇒ reduction of the error probability

• (parallel) operations in each level

=⇒ new errors due to imperfect gates





threshold τ for the

error probability & gate errors

τ ≈ 10−4–10−3 [Steane 02]
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Decoherence Free Subspaces/Subsystems (DFS)

see e. g. [Zanardi & Rasetti 97; Lidar; Knill] and many more

also called: noiseless subspaces/subsystems, passive error-correction, error-avoiding codes

Main idea: “Correct errors before they occur”

|ψ〉sys
|ε〉env

-

-

}
|Φ〉sys,env-

-
�3 �3Qs Qs

system

environment

known interaction (Hamiltonian)

decomposition of the interaction algebra A and the Hilbert space H

A ∼=
⊕

j

�

nj
⊗M(dj ,

�

) H ∼=
⊕

j

� nj ⊗ � dj

irreducible components of dimension dj and multiplicity nj

=⇒ for dj = 1 exists an decoherence free subspace of dimension nj

(for dj > 1 decoherence free subsystem)

Problem: requires non-trivial symmetry of the interaction
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DFS: Fault Tolerant Operations

operations in the algebra

A′ ∼=
⊕

j

M(nj ,

�

) ⊗ �

dj

commute with the interaction algebra

A ∼=
⊕

j

�

nj
⊗M(dj ,

�

)

=⇒ those operations preserve the DFS

For some models, universal computation is possible based on the exchange Hamiltonian or

other two-qubit interactions (see e. g. [Kempe et al. 00, DiVincenzo et al. 00]).

but: entangling gates require in general an embedding

DFS ⊗ DFS ⊂ D̃FS

=⇒ larger D̃FS based on even more symmetry
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DFS: Further Aspects

Collective Decoherence

the interaction algebra is invariant under particle permutations

“the bath cannot distinguish between the particles”

=⇒ highly symmetric interaction

Problem: in general, lack of symmetry yields multiplicity nj = 1

=⇒ simulation of an effective interaction Hamiltonian:

apply (fast) local operations

Problem: not robust against gate errors

(e. g. the exchange interactions must be able to address individual particles)

=⇒ combination with active QECC

• using DFS as single “qudits” for a QECC (e. g. [Lidar et al. 98])

• embedding an active QECC into a DFS (e. g. [Plenio et al. 97, Alber et al. 01])
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Jump Codes

(cf. Alber et al., PRL vol. 86, no. 19, pp. 4402–4405, May 7, 2001, quant-ph/0103042)

Quantum jump -
Q

Q
QQs
��*emission of e. g. photons

-|0〉

|1〉

|0〉

|1〉

Effective Hamiltonian (no jump, but monitoring)

Heff =
n∑

ν=1

−i~ Γ |1〉ν〈1|ν Ueff(t) =
n∏

ν=1

exp (−tΓ |1〉ν〈1|ν)

=⇒ decoherence free subspace (DFS): constant number of excited states |1〉

additionally: correct errors due to detected quantum jumps, i. e.,

errors at known positions (classical side information)

=⇒ “quantum erasure channel”
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QECC: Possible Directions to Proceed

Higher dimensional subsystems

• individual quantum systems are not only two-dimensional

• generalization of stabilizer codes [Rains 99, Ashikhmin & Knill 2001]

• for large alphabets, quantum MDS codes exist [Rains 99, Schlingemann & Werner 01]

Refined error models

• find systems where local/collective errors are dominant

• use additional side information [Grassl et al. 96, Gregoratti & Werner 02]

• impose symmetries [Zanardi 98, Viola et al. 00]

Optimize both QECC & algorithms

• (near) optimal codes for small systems

• better methods of fault tolerant error correction (e. g. [Steane 02])

• robust algorithms (e. g. approximative Fourier transform)
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[16] A. Klappenecker and M. Rötteler. Beyond Stabilizer Codes I: Nice Error Bases. IEEE Transactions on

Information Theory, 48(8):2392–2395, Aug. 2002. LANL preprint quant-ph/0010082.
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