

Entanglement Polytopes of Some Five Qubit States

Markus Grassl

Markus.Grassl@mpl.mpg.de

www.codetables.de

17 August 2015

NATURWISSENSCHAFTLICHE FAKULTÄT

for the science of light

Overview

- Local Spectra
- SLOCC Equivalence
- Local Invariants & Covariants
- Entanglement Polytopes & Covariants
- Computing Covariants & Entanglement Polytopes
- Three Qubits
- Four Qubits
- Five Qubits (work in progress)
- Summary & Outlook

Local Spectra

Given a pure state of n particles

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} x_{i_1, i_2, \dots, i_n} |i_1\rangle |i_2\rangle \dots |i_n\rangle \in \mathbb{C}^{d_1} \otimes \dots \otimes \mathbb{C}^{d_n}$$

One-particle reduced density matrices

Local Spectra: Qubits

Given a pure state of n qubits

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} x_{i_1, i_2, \dots, i_n} |i_1\rangle |i_2\rangle \dots |i_n\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2$$

One-particle reduced density matrices

Local Spectra: Qubits

Given a pure state of n qubits

$$|\psi\rangle = \sum_{i_1, i_2, \dots, i_n} x_{i_1, i_2, \dots, i_n} |i_1\rangle |i_2\rangle \dots |i_n\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2$$

One-particle reduced density matrices

keep only the largest eigenvalue of each one-qubit reduced density matrix (or subtract the smallest eigenvalue from the largest)

SLOCC Equivalence

Two pure states of n particles

$$|\psi\rangle, |\phi\rangle \in \mathbb{C}^{d_1} \otimes \ldots \otimes \mathbb{C}^{d_n}$$

are SLOCC equivalent iff there is a sequence of local operations and classical communication (LOCC) that converts $|\psi\rangle$ with non-zero probability to $|\phi\rangle$ and vice versa.

 \iff There exists A_1, \ldots, A_n and B_1, \ldots, B_n , $p_1, p_2 > 0$ such that

 $p_1|\phi\rangle = (A_1 \otimes \ldots \otimes A_n)|\psi\rangle$ and $p_2|\psi\rangle = (B_1 \otimes \ldots \otimes B_n)|\phi\rangle$

W. I. o. g., there exist invertible $T_i \in SL(d_i)$, $\mu \in \mathbb{C}$ such that

$$|\phi\rangle = \mu(T_1 \otimes \ldots \otimes T_n)|\psi\rangle$$

[W. Dür, G. Vidal, J. I. Cirac, PRA 62, 062314 (2000)]

SLOCC Invariants

If the pure states of n particles

$$|\psi\rangle, |\phi\rangle \in \mathbb{C}^{d_1} \otimes \ldots \otimes \mathbb{C}^{d_n}$$

are SLOCC equivalent, then there exists $\lambda \in \mathbb{C}$ such that for all invariants f of $SL(d_1) \otimes SL(d_2) \otimes \ldots \otimes SL(d_n)$

$$f(\psi) = f(\lambda\phi).$$

- The algebra of polynomial invariants is generated by a finite (but huge) number of polynomials.
- Polynomial invariants do not suffice to decide SLOCC equivalence.
- For n > 3 qubits, there are infinitely many entanglement classes.

SLOCC Covariants

- polynomial invariants map a vector to a (homogeneous) polynomial function of the components
- covariants map a vector to a (homogeneous) polynomial function of the components times a representation of the group
- the representation of the group is associated with a highest weight vector
- covariants form a finitely generated algebra
- for n qubits, covariants can be encoded as polynomial in $2^n + 2n$ variables

$$f(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{C}[x_{i_1, \dots, i_n}][y_0^{(1)}, y_1^{(1)}, \dots, y_0^{(n)}, y_1^{(n)}]$$

• the weight w of a homogeneous covariant f(x, y) can be computed from the degrees in x and y.

Entanglement Polytopes & Covariants

[M. Walter, B. Doran, D. Gross, M. Christandl, Science 340 (2013)] [A. Sawicki, M. Oszmaniec, M. Kuś, RMP 26 (2014)]

- The local spectra of all states in the closure of an SLOCC orbit form a polytope, the *entanglement polytope*.
- What is more, the polytope is spanned by the normalized highest weight vectors of the covariants that do not vanish identically on an SLOCC orbit.
- It suffices to check the finitely many covariants that generate the algebra of all covariants.
- Hence, there are finitely many points in the ambient space of the polytopes that can be vertices.
- ⇒ There are finitely many entanglement polytopes for any number of particles which provide a natural coarse-graining of the infinitely many entanglement classes.

Computing (Qubit) Covariants

[E. Briand, J.-G. Luque, J.-Y. Thibon, J. Phys. A 36 (2008)]

• the so-called ground form

$$f_0(x,y) = \sum_{i_1,\dots,i_n} x_{i_1,\dots,i_n} \cdot y_{i_1}^{(1)} \dots y_{i_n}^{(n)}$$

is an *n*-qubit covariant with normalized weight (1, 1, ..., 1).

- all covariants can be computed from f_0 using so-called transvectants
- the algorithm terminates after a finite number of steps

n	#invariants	#covariants	#normalized weights			
3	1	6	6			
4	4	170	124			
5	>124	>37886	>2574			

Computing Entanglement Polytopes

main observation

- a vertex $v\in{\rm I\!R}^n$ is not contained in the entanglement polytope $\mathcal{P}(|\psi\rangle)$ of a state $|\psi\rangle$
- \iff all covariants $f({\bm x}, {\bm y})$ with normalized weight $\overline{{\bm w}}(f) = {\bm v}$ vanish identically
- \iff all coefficients $c(\pmb{x})$ of all covariants $f(\pmb{x},\pmb{y})$ with $\overline{\pmb{w}}(f)=\pmb{v}$ vanish identically
- \iff the state $|\psi\rangle$ lies in the variety $Var(\mathcal{I}_{\boldsymbol{v}})$ of the ideal

$$\mathcal{I}_{\boldsymbol{v}} = \langle c(\boldsymbol{x}) \colon c(\boldsymbol{x}) \in \operatorname{coeff}(f(\boldsymbol{x},\boldsymbol{y})) \mid \overline{\boldsymbol{w}}(f) = \boldsymbol{v} \rangle$$

generated by the coefficients c(x) of all f(x, y) with $\overline{w}(f) = v$

Computing Entanglement Polytopes

algorithm (basic idea)

- 1. start with the full entanglement polytope
- 2. remove one vertex v (up to symmetry)
- 3. compute the corresponding ideal $\mathcal{I}_{\boldsymbol{v}} \leq \mathbb{C}[\boldsymbol{x}]$, its radical $\sqrt{\mathcal{I}_{\boldsymbol{v}}}$, and its primary decomposition yielding the irreducible components of the variety $\operatorname{Var}(\mathcal{I}_{\boldsymbol{v}})$
- test which covariants vanish on the irreducible components of the variety; this defines sub-polytopes, and the states in that entanglement polytope lie in the corresponding component of the variety
- 5. ensure that there is a state for which at least one covariant for each vertex is non-zero (compute ideal quotients)
- 6. continue in the same way with all sub-polytopes (up to symmetry)

Three Qubits

• six covariants with normalized weights

A_{111}	B_{200}	B_{020}	B_{002}	C_{111}	D_{000}	
(1, 1, 1)	$\left(1, \frac{1}{2}, \frac{1}{2}\right)$	$\left(\frac{1}{2}, 1, \frac{1}{2}\right)$	$\left(\frac{1}{2},\frac{1}{2},1\right)$	$\left(\tfrac{2}{3},\tfrac{2}{3},\tfrac{2}{3}\right)$	$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$	

- removing $v = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ yields a prime ideal with $D_{000} = 0$
- removing $v = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ yields an ideal with $C_{111} = 0$ that has 3 associated primary ideals; for all $D_{000} = 0$, and two of the covariants B_i vanish
- removing $v = (1, \frac{1}{2}, \frac{1}{2})$ yields an ideal with $B_{200} = 0$ that has 2 associated primary ideals; for all $C_{111} = D_{000} = 0$, and one of the covariants B_{020} and B_{002} vanishes as well

 \implies reproduces the known entanglement types of [Dür et al.]

Four Qubits

- 170 covariants with 124 normalized weights
- coefficients of the covariants are polynomials in $2^4 = 16$ variables, but n = 4 variables can be removed by local unitary transformations
- computation of the radical and the primary decomposition already become rather complicated
- \implies like in [Walter et al. (2013)], successfully reproduced the known entanglement types of [Verstraete et al., PRA 65 (2002)]

Five Qubits

- we do not yet even know a generating set for all covariants; more than 37886 generators
- consider subset of all five-qubit states:

 $\mathcal{W}_{0,1,2} = \{ \text{pure states with } 0, 1, \text{ or } 2 \text{ excitations} \}, \quad \dim \mathcal{W}_{0,1,2} = 16$ $\mathcal{W}_{0,2} = \{ \text{pure states with } 0 \text{ or } 2 \text{ excitations} \}, \qquad \dim \mathcal{W}_{0,2} = 11$

- all invariants vanish on $\mathcal{W}_{0,2} \subset \mathcal{W}_{0,1,2}$, i.e., they provide no information
- complete set of 15733 non-vanishing covariants with 1903 different normalized weights on $\mathcal{W}_{0,1,2}$
- note that $\mathcal{W}_{0,1,2}$ is *not* invariant under SLOCC

Results for $\mathcal{W}_{0,2}$

 $12 \ {\rm different} \ 5{\rm -dim}.$ polytopes up to permutations, $128 \ {\rm in} \ {\rm total}$

#vertices	$\#$ vertices of \mathcal{P}_{full}	#facets	$\#\mathrm{Aut}(\mathcal{P})$	#perms	$\dim \mathcal{I}$
26	26	16	120	1	11
27	25	17	6	20	8
27	24	17	12	10	5
23	23	16	12	10	8
23	23	19	12	10	8
21	21	18	4	30	7
20	20	22	8	15	6
20	20	18	12	10	6
17	17	17	12	10	6
16	16	26	120	1	7
14	14	20	12	10	5
11	11	11	120	1	5

Results for $\mathcal{W}_{0,2}$

- in addition to the vertices of the full polytope, the points $(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4})$ and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4})$, together with permutations, may become vertices of entanglement polytopes
- those entanglement types extend to the variety of all states for which all other (not yet known) covariants vanish; in particular to $W_{0,1,2}$
- the irreducible variety corresponding to an entanglement polytope may intersect W_{0,1,2} in multiple irreducible components consider, e.g., the pure product states in W_{0,1,2}; are just the basis states
- so far, 390 candidate polytopes with dim. 5 for $\mathcal{W}_{0,1,2}$, but some might be the union of others, and some might be missing (currently processing 5712 sub-polytopes)

Summary & Outlook

Summary

- coarse-grained SLOCC entanglement types from entanglement polytopes
- reproduction of known entanglement types for three and four qubits
- new partial results for five qubits

Outlook

- computation for $\mathcal{W}_{0,1,2}$ ongoing
- find more/complete set of covariants for five qubits
- derive similar results for three qutrits (structure of covariants is more complicated)
- analyse the lattice structure of the polytopes and their volume induced by the Haar measure on pure states (see also [arXiv:1502.05095])

Volumina of Four-Qubit Polytopes

\mathcal{P}_1	\mathcal{P}_1^c	l	\mathcal{P}_1^b		\mathcal{P}_1^c		\mathcal{P}_1^d	
996761	990 1	.40	990137		990204		990262	
\mathcal{P}_2	\mathcal{P}_2^a		\mathcal{P}_2^b		\mathcal{P}_2^c		\mathcal{P}_2^d	
863481	705 1	172 70		4928	704932		704791	
\mathcal{P}_3	\mathcal{P}_3^a	\mathcal{P}_3^b	$\mathcal{P}_3^c = \mathcal{P}_3^d$		\mathcal{P}_3^e		\mathcal{P}_3^f	
781562	607121	60701	10	607176	606791	606	925	607051
\mathcal{P}_4	\mathcal{P}_4							
990478	990478							
\mathcal{P}_5	\mathcal{P}_5							
130165	130165							
\mathcal{P}_6	\mathcal{P}_6^a	\mathcal{P}_6^b		\mathcal{P}_6^c	\mathcal{P}_6^d	\mathcal{P}	ре 6	${\mathcal P}_6^f$
1000000	995287	99527	77	995320	995158	995	201	995191
\mathcal{P}_7	\mathcal{P}_7							
1000000	1000000							