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Overview

• Local Spectra

• SLOCC Equivalence

• Local Invariants & Covariants

• Entanglement Polytopes & Covariants

• Computing Covariants & Entanglement Polytopes

• Three Qubits

• Four Qubits

• Five Qubits (work in progress)

• Summary & Outlook
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Local Spectra

Given a pure state of n particles

|ψ〉 =
∑

i1,i2,...,in

xi1,i2,...,in |i1〉|i2〉 . . . |in〉 ∈ C
d1 ⊗ . . .⊗ C

dn

One-particle reduced density matrices

ρ1 = tr{1}c(|ψ〉〈ψ|), ρ2 = tr{2}c(|ψ〉〈ψ|), . . . , ρn = tr{n}n(|ψ〉〈ψ|)
sorted

local spectra

? ? ?
(
λ
(1)
1 , . . . , λ

(1)
d1
, λ

(2)
1 , . . . , λ

(2)
d2
, . . . , λ

(n)
1 , . . . , λ

(n)
dn

)

︸ ︷︷ ︸

∈IRd1+d2+...+dn
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Local Spectra: Qubits

Given a pure state of n qubits

|ψ〉 =
∑

i1,i2,...,in

xi1,i2,...,in |i1〉|i2〉 . . . |in〉 ∈ C
2 ⊗ . . .⊗ C

2

One-particle reduced density matrices

ρ1 = tr{1}c(|ψ〉〈ψ|), ρ2 = tr{2}c(|ψ〉〈ψ|), . . . , ρn = tr{n}n(|ψ〉〈ψ|)
sorted

local spectra

? ? ?
(
λ
(1)
1 , λ

(1)
2 , λ

(2)
1 , λ

(2)
2 , . . . , λ

(n)
1 , λ

(n)
2

)

︸ ︷︷ ︸

∈IR2n
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Local Spectra: Qubits

Given a pure state of n qubits

|ψ〉 =
∑

i1,i2,...,in

xi1,i2,...,in |i1〉|i2〉 . . . |in〉 ∈ C
2 ⊗ . . .⊗ C

2

One-particle reduced density matrices

ρ1 = tr{1}c(|ψ〉〈ψ|), ρ2 = tr{2}c(|ψ〉〈ψ|), . . . , ρn = tr{n}n(|ψ〉〈ψ|)
sorted

local spectra

? ? ?
(
λ
(1)
1 , λ

(2)
1 , . . . , λ

(n)
1

)

︸ ︷︷ ︸

∈IRn

keep only the largest eigenvalue of each one-qubit reduced density matrix

(or subtract the smallest eigenvalue from the largest)
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SLOCC Equivalence

Two pure states of n particles

|ψ〉, |φ〉 ∈ C
d1 ⊗ . . .⊗ C

dn

are SLOCC equivalent iff there is a sequence of local operations and classical

communication (LOCC) that converts |ψ〉 with non-zero probability to |φ〉 and
vice versa.

⇐⇒ There exists A1, . . . , An and B1, . . . , Bn, p1, p2 > 0 such that

p1|φ〉 = (A1 ⊗ . . .⊗An)|ψ〉 and p2|ψ〉 = (B1 ⊗ . . .⊗Bn)|φ〉

W. l. o. g., there exist invertible Ti ∈ SL(di), µ ∈ C such that

|φ〉 = µ(T1 ⊗ . . .⊗ Tn)|ψ〉

[W. Dür, G. Vidal, J. I. Cirac, PRA 62, 062314 (2000)]
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SLOCC Invariants

If the pure states of n particles

|ψ〉, |φ〉 ∈ C
d1 ⊗ . . .⊗ C

dn

are SLOCC equivalent, then there exists λ ∈ C such that for all invariants f of

SL(d1)⊗ SL(d2)⊗ . . .⊗ SL(dn)

f(ψ) = f(λφ).

• The algebra of polynomial invariants is generated by a finite (but huge)

number of polynomials.

• Polynomial invariants do not suffice to decide SLOCC equivalence.

• For n > 3 qubits, there are infinitely many entanglement classes.
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SLOCC Covariants

• polynomial invariants map a vector to a (homogeneous) polynomial

function of the components

• covariants map a vector to a (homogeneous) polynomial function of the

components times a representation of the group

• the representation of the group is associated with a highest weight vector

• covariants form a finitely generated algebra

• for n qubits, covariants can be encoded as polynomial in 2n + 2n variables

f(x,y) ∈ C[xi1,...,in ][y
(1)
0 , y

(1)
1 , . . . , y

(n)
0 , y

(n)
1 ]

• the weight w of a homogeneous covariant f(x,y) can be computed from

the degrees in x and y.
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Entanglement Polytopes & Covariants

[M. Walter, B. Doran, D. Gross, M. Christandl, Science 340 (2013)]

[A. Sawicki, M. Oszmaniec, M. Kuś, RMP 26 (2014)]

• The local spectra of all states in the closure of an SLOCC orbit form a

polytope, the entanglement polytope.

• What is more, the polytope is spanned by the normalized highest weight

vectors of the covariants that do not vanish identically on an SLOCC orbit.

• It suffices to check the finitely many covariants that generate the algebra

of all covariants.

• Hence, there are finitely many points in the ambient space of the

polytopes that can be vertices.

=⇒ There are finitely many entanglement polytopes for any number of

particles which provide a natural coarse-graining of the infinitely many

entanglement classes.
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Computing (Qubit) Covariants

[ E. Briand, J.-G. Luque, J.-Y. Thibon, J. Phys. A 36 (2008)]

• the so-called ground form

f0(x, y) =
∑

i1,...,in

xi1,...,in · y(1)i1
. . . y

(n)
in

is an n-qubit covariant with normalized weight (1, 1, . . . , 1).

• all covariants can be computed from f0 using so-called transvectants

• the algorithm terminates after a finite number of steps

n #invariants #covariants #normalized weights

3 1 6 6

4 4 170 124

5 >124 >37886 >2574

Markus Grassl – 10– 17.08.2015



Entanglement Polytopes of Some Five Qubit States Workshop on Quantum Marginals and Numerical Range

Computing Entanglement Polytopes

main observation

a vertex v ∈ IRn is not contained in the entanglement polytope P(|ψ〉) of
a state |ψ〉

⇐⇒ all covariants f(x,y) with normalized weight w(f) = v vanish identically

⇐⇒ all coefficients c(x) of all covariants f(x,y) with w(f) = v vanish

identically

⇐⇒ the state |ψ〉 lies in the variety Var(Iv) of the ideal

Iv = 〈c(x) : c(x) ∈ coeff(f(x,y)) | w(f) = v〉

generated by the coefficients c(x) of all f(x,y) with w(f) = v
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Computing Entanglement Polytopes

algorithm (basic idea)

1. start with the full entanglement polytope

2. remove one vertex v (up to symmetry)

3. compute the corresponding ideal Iv ≤ C[x], its radical
√
Iv, and its

primary decomposition yielding the irreducible components of the variety

Var(Iv)

4. test which covariants vanish on the irreducible components of the variety;

this defines sub-polytopes, and the states in that entanglement polytope

lie in the corresponding component of the variety

5. ensure that there is a state for which at least one covariant for each vertex

is non-zero (compute ideal quotients)

6. continue in the same way with all sub-polytopes (up to symmetry)
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Three Qubits

• six covariants with normalized weights

A111 B200 B020 B002 C111 D000

(1, 1, 1) (1, 12 ,
1
2 ) ( 12 , 1,

1
2 ) ( 12 ,

1
2 , 1) ( 23 ,

2
3 ,

2
3 ) ( 12 ,

1
2 ,

1
2 )

• removing v = ( 12 ,
1
2 ,

1
2 ) yields a prime ideal with D000 = 0

• removing v = ( 23 ,
2
3 ,

2
3 ) yields an ideal with C111 = 0 that has 3 associated

primary ideals; for all D000 = 0, and two of the covariants Bi vanish

• removing v = (1, 12 ,
1
2 ) yields an ideal with B200 = 0 that has 2 associated

primary ideals; for all C111 = D000 = 0, and one of the covariants B020

and B002 vanishes as well

=⇒ reproduces the known entanglement types of [Dür et al.]
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Four Qubits

• 170 covariants with 124 normalized weights

• coefficients of the covariants are polynomials in 24 = 16 variables, but

n = 4 variables can be removed by local unitary transformations

• computation of the radical and the primary decomposition already become

rather complicated

=⇒ like in [Walter et al. (2013)], successfully reproduced the known

entanglement types of [Verstraete et al., PRA 65 (2002)]
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Five Qubits

• we do not yet even know a generating set for all covariants;

more than 37886 generators

• consider subset of all five-qubit states:

W0,1,2 = {pure states with 0, 1, or 2 excitations}, dimW0,1,2 = 16

W0,2 = {pure states with 0 or 2 excitations}, dimW0,2 = 11

• all invariants vanish on W0,2 ⊂ W0,1,2, i.e., they provide no information

• complete set of 15733 non-vanishing covariants with 1903 different

normalized weights on W0,1,2

• note that W0,1,2 is not invariant under SLOCC
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Results for W0,2

12 different 5-dim. polytopes up to permutations, 128 in total

#vertices #vertices of Pfull #facets #Aut(P) #perms dim I
26 26 16 120 1 11

27 25 17 6 20 8

27 24 17 12 10 5

23 23 16 12 10 8

23 23 19 12 10 8

21 21 18 4 30 7

20 20 22 8 15 6

20 20 18 12 10 6

17 17 17 12 10 6

16 16 26 120 1 7

14 14 20 12 10 5

11 11 11 120 1 5
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Results for W0,2

• in addition to the vertices of the full polytope, the points (1, 12 ,
1
2 ,

1
2 ,

3
4 )

and ( 12 ,
1
2 ,

1
2 ,

3
4 ,

3
4 ), together with permutations, may become vertices of

entanglement polytopes

• those entanglement types extend to the variety of all states for which all

other (not yet known) covariants vanish; in particular to W0,1,2

• the irreducible variety corresponding to an entanglement polytope may

intersect W0,1,2 in multiple irreducible components

consider, e.g., the pure product states in W0,1,2; are just the basis states

• so far, 390 candidate polytopes with dim. 5 for W0,1,2,

but some might be the union of others, and some might be missing

(currently processing 5712 sub-polytopes)
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Summary & Outlook

Summary

• coarse-grained SLOCC entanglement types from entanglement polytopes

• reproduction of known entanglement types for three and four qubits

• new partial results for five qubits

Outlook

• computation for W0,1,2 ongoing

• find more/complete set of covariants for five qubits

• derive similar results for three qutrits

(structure of covariants is more complicated)

• analyse the lattice structure of the polytopes and their volume induced by

the Haar measure on pure states (see also [arXiv:1502.05095])
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Lattice of Four-Qubit Polytopes
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Lattice of Four-Qubit Polytopes
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Volumina of Four-Qubit Polytopes

P
1

996 761

P
2

863 481

P
3
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P
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1 000 000
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1 000 000
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1
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1
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1
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1

990 204 990 262
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2

Pb
2
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Pc
2

Pd
2

704 932 704 791
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3

Pb
3

Pc
3

Pd
3

Pe
3

P
f
3

607 121 607 010 607 176 606 791 606 925 607 051

P4

990 478

P5
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6

Pb
6
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6

Pd
6
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6

P
f
6
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