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Abstract

We consider the problem of determining the state of a finite dimensional quantum
system by a finite set of different measurements in an optimal way. The measure-
ments can either be projective von Neumann measurements or generalized mea-
surements (POVMs). While optimal solutions for projective measurements are only
known for prime power dimensions, based on numerical solutions it is conjectured
that solutions for POVMs exist in any dimension. We support this conjecture by
constructing explicit algebraic solutions in small dimensions d, in particular d = 12.
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1 Introduction

We consider a quantum system of finite dimension d. A state of that system
can be described by a density matrix ρ ∈ Cd×d, which is a positive semi-
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definite Hermitian matrix with trace one. Hence, ρ can be described by d2−1
independent real parameters. The problem of quantum state tomography is
to determine these parameters by means of measurements.

Projective von Neumann measurements can be described by a set of mu-
tually orthogonal projection operators Πi whose sum is the identity matrix,
i.e.

Π2

i = Πi for all i,(1) ∑
i

Πi = Id, and(2)

Tr(ΠiΠj)= 0 for i �= j.(3)

The statistics of repeated measurements of the identically prepared state ρ
yields expectation values

pi := Pr(outcome = i) = Tr(ρPi).(4)

If all the projection operators have rank one, the corresponding measurement
has d different outcomes. Condition (2) implies that the sum of the prob-
abilities (4) is one. Hence a projective measurement yields at most d − 1
independent real parameters. Therefore at least d + 1 different measurements
are needed in order to obtain the d2 − 1 independent real parameters of the
density matrix ρ.

If we relax condition (3) and replace the orthogonal projection operators
by arbitrary positive semi-definite operators Ej we arrive at the concept of
so-called positive operator-valued measures (POVMs) (see, e.g., [11]). The
conditions for a POVM read:∑

j

Ej = Id and(5)

Ej ≥ 0 for all j.(6)

Quite often, the elements Ej will all have rank one and will be sub-normalized
projection operators. Again, the statistics of the POVM yields non-negative
values p̃j

p̃j := Pr(outcome = j) = Tr(ρEj).(7)

While a projective measurement yields at most d parameters whose sum equals
one, the number of elements Ej of a POVM is unbounded. Obviously, a
minimal POVM that allows to completely determine the density matrix ρ
must have at least d2 elements.
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2 Optimal Measurements

2.1 Projective Measurements

In order to achieve maximal independent measurement results, one requires
that the outcomes of one projective measurement are independent of the other
projective measurements. A projective measurement with the maximal num-
ber of d elements defines an orthonormal basis of the space Cd. Two orthonor-
mal bases Bk = {|ψk

i 〉 : i = 1, . . . , d} and B� = {|ψ�
j〉 : j = 1, . . . , d} are called

mutually unbiased iff

|〈ψk
i |ψ�

j〉|2 =

{
1/d for k �= �,
δi,j for k = �.

(8)

It has been shown that a collection of d + 1 mutually unbiased bases provides
an optimal means of determining the density matrix of a quantum system of
dimension d [15].

Constructions for maximal sets of d + 1 mutually unbiased bases (MUBs)
are only known for prime power dimensions (see, e.g., [10] and references
therein). Some constructions are related to finite affine planes [5]. The mea-
surement outcomes can be interpreted as line integrals in the corresponding
finite phase spaces [13,14].

For dimensions which are not a prime power, little is known about the
maximal number of mutually unbiased based. For example, it is widely be-
lieved that there are no more than three MUBs in dimension six [6,16], while
at least three MUBs exist in any dimension.

2.2 Generalized Measurements

As mentioned before, a generalized measurement that allows the reconstruc-
tion of the state ρ must have at least d2 elements. A POVM with that property
is called informationally complete. If in addition the measurement results are
maximally independent, the POVM is called symmetric informationally com-
plete POVM (SIC-POVM). It consists of d2 operators of the form Ej = Πj/d,
where the rank-one projection operators Πj = |φj〉〈φj| fulfill the conditions

Tr(ΠjΠk) =
1

d + 1
for j �= k.(9)

It has been conjectured that SIC-POVMs exists for all dimensions [1,12,16].
Numerical solutions for dimension d ≤ 45 are discussed in [12]. Zauner [16]
provides algebraic solutions for d = 2, 3, 4, 5, and a solution for d = 8 based
on the work of Hoggar [7]. Additional algebraic solutions for d = 7, 19 can
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be found in [1]. The first solution for a non prime-power dimension, d = 6,
was given in [6]. Here we will present further algebraic solutions for small
dimensions, including d = 12.

A common property of all solutions obtained so far is that they are highly
symmetric. The elements of the SIC-POVM (with the exception of the solution
for d = 8) are a single orbit of the finite version of the Weyl–Heisenberg group
generated by a cyclic shift operator and a shift in the Fourier transformed
basis. All of these SIC-POVMs possess at least an additional symmetry of
order three.

In the following we will construct SIC-POVMs which have a prescribed
symmetry group. In addition to SIC-POVMs which are constructed using the
Weyl–Heisenberg group, other symmetry groups which correspond to so-called
nice unitary error bases [9] are used as well.

3 Construction of SIC-POVMs with Symmetry

In order to simplify the construction of SIC-POVMs, we will restrict our atten-
tion to SIC-POVMs that are group-covariant with respect to a finite symmetry
group [12]. Given a finite group G which we will identify with a unitary rep-
resentation of degree d, a POVM P in dimension d is covariant with respect
to G iff

P = {U−1

g E0Ug : g ∈ G} for some E0 ∈ P.(10)

If the representation of the group is irreducible, the orbit of any non-zero
operator E0 under G is up to normalization a POVM, as by the lemma of
Schur the sum

∑
g∈G U−1

g E0Ug is proportional to the identity matrix. As a

SIC-POVM has d2 elements, the order of the group G must be a multiple of
d2.

One candidate for the group G is the so-called Weyl–Heisenberg group
Hd which exists for any dimension d. It is generated by the following two
operators:

X :=

d−1∑
j=0

|j + 1〉〈j| and Z :=

d−1∑
j=0

ωj
d|j〉〈j|,

where ωd := exp(2πi/d) is a primitive complex d-th root of unity and the cyclic
shift is modulo d. Each element of Hd can be uniquely written as ωc

dX
aZb

with a, b, c ∈ {0, . . . , d − 1}. Two elements ωc
dX

aZb and ωc′

d Xa′

Zb′ commute
iff ab′ − a′b = 0 mod d. The center ζ(Hd) of the group Hd is generated by
ωdI, where I denotes the identity matrix. Ignoring the global phase factor,
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the group Hd is isomorphic to the direct product of two cyclic groups of order
d, i.e., Hd/ζ(Hd) ∼= Zd × Zd where Zd := Z/dZ denotes the ring of integers
modulo d. The matrices XaZb are mutually orthogonal with respect to the
trace inner product and form a vector space basis of all d× d matrices. Later
we will also use other groups G with the property that the quotient G̃ of
G by its center has d2 elements and that the corresponding matrices form a
vector space basis of all d × d matrices. Such groups are known as abstract
error groups, and the matrices corresponding to G̃ are called nice unitary
error bases (see [9]). The group G̃ is called index group as the elements of the

POVM (10) can be labeled by the elements of G̃.

It has been conjectured that SIC-POVMs which are group-covariant with
respect to the Weyl–Heisenberg group exist in any dimension [12]. Zauner [16]
has already conjectured that one can always find a SIC-POVM that possesses
an additional symmetry of order three that stabilizes the initial operator E0.
This additional symmetry is a particular element of the normalizer of Hd in the
full unitary group, which is known as the Jacobi group Jd [6] or Clifford group
[1]. The action of Jd on Hd modulo the center via conjugation is isomorphic
to SL(2, Zd), the group of 2 × 2 matrices over the integers modulo d with
unit determinant. Appleby [1] has verified that indeed all numerical solutions
computed by [12] have a symmetry that is conjugated to the element given by
Zauner [16]. Based on those results, Appleby conjectured that any SIC-POVM
that is covariant with respect to the Weyl–Heisenberg group would possess an
additional symmetry that is conjugated to Zauner’s element. However, in
Section 4.1 we will provide a counter-example to this strongest version of
Appleby’s conjectures.

We use the following ansatz:

Algorithm 1 (Searching for a group-covariant SIC-POVM)

(i) Let G ⊂ U(d) be a unitary representation of degree d of an abstract error
group.

(ii) Let T be a non-trivial element of the normalizer of G in the full unitary
group, i.e. T /∈ G and T is not proportional to identity.

(iii) Let B = {|b0〉, . . . , |bm−1〉} be a basis of an eigenspace of T .

(iv) A generic vector in this eigenspace has the form

|φ0〉 =

m−1∑
j=0

(x2j + ix2j+1)|bj〉,(11)

where x0, . . . , x2m−1 are real variables and i2 = −1.
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(v) Let T = {g0 = id, . . . , gd2−1} be representatives of the cosets of G by its
center ζ(G).

(vi) Combining (9), (10), and (11), we get a system of polynomial equations
for the variables xµ, in particular

Tr(|φ0〉〈φ0|U−1

gj
|φ0〉〈φ0|Ugj

) =
1

d + 1
for all gj ∈ T \ {id}.(12)

(vii) Try to find a solution for the real variables xµ.

Note that we have to double the number of variables as complex conjugation
cannot directly be expressed as a polynomial function. However, we can set
e.g. x1 = 0 as we may multiply |φ0〉 by any phase eiθ. The restriction of the
fiducial vector |φ0〉 to an eigenspace of T reduces the number of variables. This
is important as it turns out that the system of polynomial equations is quite
hard to solve. Another technical problem is that the variety of the solutions
is given over the algebraically closed field C, but we are only interested in the
solutions over R. Nonetheless, using the computer algebra system MAGMA

[2], we were able to compute some new SIC-POVMs. Further details will be
given in the next section.

4 Examples

4.1 Weyl–Heisenberg Group

In addition to the previously known algebraic solutions for dimension d =
2, 3, 4, 5, 7, 13 [1,16], we have computed SIC-POVMs that are covariant with
respect to the Weyl–Heisenberg group for d = 6, 8, 9, 10, 12, 13 (see Table 1).
Unfortunately, most of the solutions are quite complicated, and further in-
vestigation is necessary. All solutions can be obtained from the author on
request.

In all cases, the fiducial vector is stabilized by an element of order 3 or 6.
The last column lists the number of SIC-POVMs obtained from the action of
the Jacobi group. With the exception of d = 8, d = 12, and possibly d = 13,
complex conjugation doubles the number of SIC-POVMs.

In the following, we focus on dimension d = 12. One solution for the not
normalized fiducial vector |φ0〉 = |ψ12〉 is given in Table 2. The coordinates vi

are elements of the number field Q(
√

2,
√

13, θ1, θ2, i, ω3) of degree 64 generated
by

θ1 :=

√√
13 − 1, θ2 :=

√√
13 + 3, i2 = −1, ω3 := exp 2πi/3.
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Table 1
SIC-POVMs which are covariant with respect to the Weyl–Heisenberg group.

d unitary automorphism number of SIC-POVMs
6 order 3 48 + 48
8 order 6 64
9 order 3 216 + 216
10 order 3 240 + 240
12 order 3 384
13 order ≥ 3 not yet computed

The initial vector |ψ12〉 is an eigenvector of the matrix T12 given in Table 3.
This matrix T12 is not conjugated to Zauner’s matrix, as the multiplicities of
the eigenvalues are 3, 3, and 6, whereas Zauner’s matrix has multiplicities 3,
4, and 5 (see [16]). Hence we have a counter-example to Conjecture C of [1]
which states that any SIC-POVM that is covariant with respect to the Weyl–
Heisenberg group possesses a symmetry of order three that is conjugated to
Zauner’s matrix.

Before considering other symmetry groups in the next section, we note
that for dimension d = 13 the additional symmetry T13 can be chosen to
be a permutation matrix. This helped in solving the system of polynomial
equations, as the eigenvectors of T13 have a particular simple structure.

4.2 Other Groups

As mentioned before, the orbit of a vector under a finite irreducible matrix
group gives rise to a covariant POVM. Candidates for symmetry groups are
abstract error groups. A catalogue of the corresponding representations for
small dimension can be found at [8].

An algebraic solution for a SIC-POVM in dimension 8 has been constructed
by Hoggar [7, Example 8]. An explicit expression can be found in [16]. That
SIC-POVM is covariant with respect to the threefold tensor product of the
group generated by the Pauli matrices. The corresponding index group is the
elementary abelian group of order 64.

Numerical solutions for SIC-POVMs which are covariant with respect to
other groups have been reported in [12]. Using the numbering of small groups
as e.g. in MAGMA, the corresponding index groups are G(36, 11), G(64, 8), and
G(81, 9) where we use the notation G(n, m) for SmallGroup(n,m). Note that
in [12] additionally the group G(36, 14) is listed, but this group corresponds
to the Weyl–Heisenberg group.
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Table 2
Coordinates of the (not normalized) initial vector |ψ12〉 =

∑
12

i=1
vi|i〉.

v1 = 16

v2 =
(
((
√

26 +
√

2 −√
13 − 1)θ1 + (

√
26 − 5

√
2 − 2

√
13 + 10))θ2

+((−√
26 − 3

√
2 + 2

√
13 + 6)θ1 + (4

√
2 − 4))

)
i

+((−√
13 − 1)θ1 + (

√
26 − 5

√
2))θ2 + (

√
26 + 3

√
2)θ1 + 4

v3 = ((4
√

2 − 8)θ1 − 4
√

26 − 4
√

2 + 4
√

13 + 4)i

v4 = (((4
√

2 − 4)θ1 − 4
√

2 + 8)θ2 + (8
√

2 − 8))i + (−4θ1 − 4
√

2)θ2 + 8

v5 = (−2
√

26 − 6
√

2)θ1 − 8

v6 =
(
((
√

26 −√
2 −√

13 + 1)θ1 + (2
√

2 − 4))θ2

+((−2
√

2 + 4)θ1 + (2
√

26 + 2
√

2 − 2
√

13 − 2))
)
i

+((−√
13 + 1)θ1 + 2

√
2)θ2 + 2

√
2θ1 + 2

√
13 + 2

v7 = (16
√

2 − 16)i

v8 =
(
((
√

26 +
√

2 −√
13 − 1)θ1 + (

√
26 − 5

√
2 − 2

√
13 + 10))θ2

+((
√

26 + 3
√

2 − 2
√

13 − 6)θ1 − 4
√

2 + 4)
)
i

+((−√
13 − 1)θ1 + (

√
26 − 5

√
2))θ2 + (−√

26 − 3
√

2)θ1 − 4

v9 = −4
√

2θ1 − 4
√

13 − 4

v10 = (((4
√

2 − 4)θ1 − 4
√

2 + 8)θ2 + (−8
√

2 + 8))i + (−4θ1 − 4
√

2)θ2 − 8

v11 = ((2
√

26 + 6
√

2 − 4
√

13 − 12)θ1 − 8
√

2 + 8)i

v12 =
(
((
√

26 −√
2 −√

13 + 1)θ1 + (2
√

2 − 4))θ2

+((2
√

2 − 4)θ1 − 2
√

26 − 2
√

2 + 2
√

13 + 2)
)
i

+((−√
13 + 1)θ1 + 2

√
2)θ2 − 2

√
2θ1 − 2

√
13 − 2

Below we give algebraic solutions for the non-abelian groups G(36, 11) and
G(64, 78). The SIC-POVM for the latter group appears to be new.
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Table 3
The matrix T12 stabilizing |ψ12〉 is given as 1/2 times the following matrix, where

ω12 = exp(2πi/24) denotes a primitive complex 24th root of unity:
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ω17

24
0 0 −ω7

24
+ ω3

24
0 0 ω5

24
0 0 ω11

24
0 0

0 ω8

24
0 0 −ω4

24
+ 1 0 0 ω8

24
0 0 −ω4

24
+ 1 0

0 0 ω5

24
0 0 −ω7

24
+ ω3

24
0 0 ω17

24
0 0 ω11

24

ω8

24
0 0 ω8

24
0 0 ω8

24
0 0 ω8

24
0 0

0 ω11

24
0 0 ω17

24
0 0 −ω7

24
+ ω3

24
0 0 ω5

24
0

0 0 −ω4

24
+ 1 0 0 ω8

24
0 0 −ω4

24
+ 1 0 0 ω8

24

ω17

24
0 0 ω11

24
0 0 ω5

24
0 0 −ω7

24
+ ω3

24
0 0

0 ω8

24
0 0 ω8

24
0 0 ω8

24
0 0 ω8

24
0

0 0 ω5

24
0 0 ω11

24
0 0 ω17

24
0 0 −ω7

24
+ ω3

24

−ω4

24
+ 1 0 0 ω8

24
0 0 −ω4

24
+ 1 0 0 ω8

24
0 0

0 −ω7

24
+ ω3

24
0 0 ω17

24
0 0 ω11

24
0 0 ω5

24
0

0 0 ω8

24
0 0 ω8

24
0 0 ω8

24
0 0 ω8

24

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

4.2.1 Dimension 6
We start with the group G6 defined as

G6 :=
〈

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −ω3
12 0 0 0 0

−ω3
12 0 0 0 0 0

0 0 0 −ω2
12 0 0

0 0 ω2
12 0 0 0

0 0 0 0 ω12 0
0 0 0 0 0 −ω12

⎞
⎟⎟⎟⎟⎟⎟⎠

〉
,

where ω12 := exp(2πi/12) denotes a primitive complex 12th root of unity.
The irreducible matrix group G6 has order 216 and is a representation of

G(216, 42). The index group G̃6 := G6/ζ(G6) is isomorphic to G(36, 11). The
following two elements normalize the group G6:

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ω17
72 ω71

72 0 0 0 0

−ω17
72 −ω71

72 0 0 0 0

0 0 ω5
72 ω23

72 0 0

0 0 ω5
72 −ω23

72 0 0

0 0 0 0 ω5
72 ω23

72

0 0 0 0 ω5
72 −ω23

72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −ω3
24 0 0

0 0 −ω9
24 0 0 0

0 −ω11
24 0 0 0 0

ω5
24 0 0 0 0 0

0 0 0 0 0 ω7
24

0 0 0 0 −ω24 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The group N6 generated by G6 and the previous matrices has order 3888,
and the index group G̃6 = N6/G6 is isomorphic to G(18, 3). As prescribed
additional symmetry we use the matrix T6 given in Table 4. A scalar multiple
of T6 is contained in N6,

Solutions for a fiducial vector in an eigenspace of T6 can be expressed over
the number field Q(ω72, θ) of degree 288 where ω72 := exp 2πi/72 , θ := 3

√
γ,
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Table 4
The matrix T6 stabilizing |ψ6〉〈ψ6|.

T6 :=
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i − 1 −i − 1 0 0 0 0

1 − i −i − 1 0 0 0 0

0 0 i − 1 i + 1 0 0

0 0 i − 1 −i − 1 0 0

0 0 0 0 ω3

12
+ ω2

12
− ω12 −ω3

12
+ ω2

12
+ ω12

0 0 0 0 −ω3

12
− ω2

12
+ ω12 −ω3

12
+ ω2

12
+ ω12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and γ is a root of the polynomial

γ4 +
−5ω3

12 + 4ω12

252
γ3 +

3ω2
12 − 7

49392
γ2 − 4ω3

12 + ω12

18670176
γ − ω2

12

5489031744

The coordinates of one of the four fiducial vectors which he have found
are given in Table 5. Each of the vectors is only stabilized by T6 which has
order three, and the orbits of the vectors under N6 are disjoint. Hence we get
18/3 = 6 different SIC-POVMs from each of the four fiducial vectors. None of
the SIC-POVMs is invariant under complex conjugation, so in total we obtain
48 SIC-POVMs which are covariant with respect to G6.

4.2.2 Dimension 8
We have computed an algebraic solution for a SIC-POVM in dimension 8 that
is covariant with respect to the Weyl–Heisenberg group (see Table 1). Here we
consider the group G8 of order 128 which is isomorphic to G(128, 813) defined
as

G8 :=
〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 i
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i
0 0 0 0 i 0 0 0
0 0 0 0 0 i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉
,

where i =
√
−1. The center ζ(G8) of G8 has order two and is generated by

−I. Hence the quotient G̃8 = G8/ζ(G8) is a group of order 64 isomorphic
to G(64, 78) which is a non-abelian index group. The normalizer of G8 is the
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Table 5
Coordinates of one of the (not normalized) initial vectors |ψ6〉.

v1 := 1

v2 := ω6 − ω12

v3 := (6223392ω2
9 − 2074464ω18)θ

9 + (16464ω11
36 + 90552ω5

36)θ
6

+(−658ω2
9 − 140ω18)θ

3 + (−ω11
36 + 2ω5

36)/9

v4 := (6223392ω11
36 − 4148928ω2

9 − 2074464ω5
36 + 6223392ω18)θ

9

+(−107016ω11
36 + 107016ω2

9 + 16464ω5
36 − 16464ω18)θ

6

+(−658ω11
36 + 798ω2

9 − 140ω5
36 − 658ω18)θ

3 + (−ω11
36 + ω2

9 − ω5
36 + ω18)/9

v5 := (6316742880i − 4094991936ω6 + 4094991936ω12 + 10411734816)θ11/19

+(−192752280i + 83670048ω6 + 83670048ω12 + 109082232)θ8/19

+(−326928i + 931686ω6 − 931686ω12 − 1258614)θ5/19

+(−1477i − 4543ω6 − 4543ω12 + 6020)θ/572

v6 := (6316742880i − 16728477696ω6 + 4094991936ω12 + 2221750944)θ11/19

+(25412184i + 83670048ω6 − 301834512ω12 + 109082232)θ8/19

+(−326928i + 1585542ω6 − 931686ω12 + 604758)θ5/19

+(10563i − 4543ω6 − 7497ω12 + 6020)θ2/57

where i2 = −1 and ωm := exp(2πi/m) denotes a primitive complex m-th
root of unity.

group N8 of order 4096 given by

N8 :=
〈
G8,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 i 0 0 0
0 0 0 −1 0 0 0 0
0 0 −i 0 0 0 0 0
0 −i 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −i 0 0
0 0 −1 0 0 0 0 0
0 0 0 −i 0 0 0 0
i 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 i 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉
.

The action of N8 on G8 via conjugation gives rise to the full automorphism
group of G8 of order 1024. In this case, we have not found a solution with
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an additional non-trivial symmetry. However, we can directly solve the poly-
nomial equations (12) for a generic vector in C8 setting some coordinates to
zero. One solution is

|ψ8〉 :=
1√
6
(0, 1, ω8, 0, 1,

√
2, 0, ω8)

t,(13)

where ω8 := exp(2πi/8) is a primitive complex 8th root of unity. Only the
elements in the center of N8 stabilize the fiducial vector given by (13). So
the orbit of |ψ8〉〈ψ8| under the group N8 has 1024 elements, which can be
partitioned into 16 SIC-POVMs. On those 16 SIC-POVMs, the group N8 acts
as elementary abelian group Z4

2, corresponding to the outer automorphisms
of G8. Finally, we note that the set of 16 SIC-POVMs is invariant under
complex conjugation, i.e., the SIC-POVM possesses a non-trivial anti-unitary
automorphism of order two.

5 Conclusion & Outlook

The problem of completely identifying a quantum state by means of measure-
ments can be tackled using either projective von Neumann measurements or
generalized measurements (POVMs). Optimal projective measurements are
closely connected to maximal sets of mutually unbiased bases (MUBs), and
for POVMs we get the notion of SIC-POVMs. The situation for the two cases
is quite different. Constructions for maximal sets of MUBs are known for
any prime power dimension. So far, we do not know a general construction
for SIC-POVMs for a sequence of arbitrary large dimensions. Imposing addi-
tional symmetries, we were able to explicitly construct SIC-POVMs in small
dimensions, using various abstract error groups. Despite our initial hope, we
were not able to derive a general construction of SIC-POVMs which are co-
variant with respect to the Weyl–Heisenberg group from the explicit algebraic
solutions in small dimensions. Yet, our algebraic solutions are completely in
line with the weakest formulation of Zauner’s conjecture, namely that such
SIC-POVMs exists in any dimension.

We conclude by mentioning a modification of the problem of determining
the state of a quantum system. The modified problem is related to what is
known in the literature as Pauli problem. Pauli posed the question whether
knowledge of the probability distribution for both position and momentum
would completely determine the wave function of a quantum system. Trans-
lated into our context, the question is whether the statistics of two projective
measurements that correspond to two mutually unbiased bases suffices to de-
termine a density operator that has rank one. That is, the reconstruction
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of the quantum state from the measurement statistics can make use of the
additional promise that the density matrix has rank one.

In both cases, the answer is negative, i.e., we need more than two projective
measurements in order to determine the 2d − 2 independent real parameters
of a pure quantum state. This follows directly from the existence of at least
three MUBs in any dimension. All states from the third basis will have the
same flat distribution with respect to the other two bases. For POVMs, it is
also still open how many elements a minimal POVM must have to determine
the 2d − 2 independent real parameters of a pure quantum state [3,4].
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