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Grover’s quantum search algorithm for an arbitrary initial amplitude distribution
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Grover’s algorithm for quantum searching is generalized to deal with arbitrary initial complex amplitude
distributions. First-order linear difference equations are found for the time evolution of the amplitudes of the
marked and unmarked states. These equations are solved exactly. New expressions are derived for the optimal
time of measurement and the maximal probability of success. They are found to depend on the averages and
variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.
Our results imply that Grover’s algorithm is robust against modest noise in the amplitude initialization proce-
dure.@S1050-2947~99!09009-5#
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It is now firmly established that there exists a gap betw
the computational power of quantum and classical comp
ers. A dramatic example of the speedup offered by quan
computers is Grover’s quantum search algorithm@1,2# for
finding a marked element amongN possible input values, in
the presence of an oracle. On average a classical comp
would needN/2 oracle queries, whereas a quantum compu
can accomplish the same task using merelyO(AN) queries.
The importance of Grover’s result stems from the fact tha
proves the enhanced power of quantum computers comp
to classical ones for a whole class of oracle-based proble
for which the bound on the efficiency of classical algorithm
is known.

Grover’s algorithm can be represented as searching a
image of an oracle-computable Boolean function, which c
only be computed forward, but whose inverse cannot be
rectly computed. Such a function isF:D→$0,1% whereD is
a set ofN domain values~or states! and the preimages of th
value 1 are called themarkedstates. The problem is to iden
tify one of the marked states, i.e., somevPD such that
F(v)51. Problems of this type are very common. One i
portant example, from cryptography, is searching for the
K of the data encryption standard~DES! @3#, given a known
plaintextP and its ciphertextC, whereF51 if the plaintext
and ciphertext match@i.e., EK(P)5C whereEK is the en-
cryption function# and F50 otherwise. Other examples a
solutions of nondeterministic polynomial time~NP! and NP-
complete problems, which include virtually all the difficu
computing problems in practice@4#.

A large number of results followed Grover’s discover
These results include a proof@5# that the algorithm is as
efficient as theoretically possible@6#, a variety of applica-
tions in which the algorithm is used in the solution of oth
problems@7–14#, and recently an experimental implement
tion using a nuclear magnetic resonance~NMR! quantum
computer@15#. Several generalizations of Grover’s origin
algorithm have been published, the first of which dealt w
the case of more than one marked state@16#. The algorithm
was further generalized by allowing an arbitrary~but con-
PRA 601050-2947/99/60~4!/2742~4!/$15.00
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stant! unitary transformation to take the place of the Ha
amard transform in the original setting@17#.

In this paper, we generalize Grover’s algorithm by allo
ing for an arbitrary complex initial amplitude distribution.
We present an exact solution for the time evolution of t
amplitudes under these general initial conditions. We fi
that the generalized search algorithm still requiresO(AN/r )
iterations, wherer is the number of marked states, althou
the maximal success probability can be small for certain
favorable initial amplitude distributions. The case of an ar
trary initial amplitude distribution is particularly relevant i
the presence of unitary errors in the gates implementing
initialization step, such as over- or underrotations. Such
rors can result in a deviation from the uniform initial amp
tude distribution assumed in the usual treatment of Grov
algorithm, and as detailed below, our analysis shows that
algorithm will still work in the presence of modest errors.

We will now present the modified Grover algorithm an
derive difference equations for the time evolution of the a
plitudes in it. We then solve these equations exactly a
analyze the results. Letk(t) @ l (t)# denote the amplitude o
the marked@unmarked# states aftert iterations of the algo-
rithm. It was shown in@16# that the amplitude of the marke
states increases ask(t)5sin@v(t11/2)#/Ar , where v
52 arcsin(Ar /N). At the same time the amplitude of th
unmarked states decreases asl (t)5cos@v(t11/2)#/AN2r .
For N@r the optimal time to measure and complete the c
culation is afterT5O(AN/r ) iterations, whenk(t) is maxi-
mal. In our modified algorithm we simply omit the initializa
tion step from Grover’s original algorithm. It thus consists
the following stages.

~1! Use any initial distribution of marked and unmarke
states, e.g., the final state of any other quantum algorithm~do
not initialize the system to the uniform distribution!.

~2! Repeat the following stepsT times: ~a! Rotate the
marked states by a phase ofp radians.~b! Rotate all states
by p radians around the average amplitude ofall states. This
is done by~i! Hadamard transforming every qubit,~ii ! rotat-
ing the u0& state by a phase ofp radians, and~iii ! again
Hadamard transforming every qubit.
2742 ©1999 The American Physical Society
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~3! Measure the resulting state.
Next, we analyze the time evolution of the amplitudes

the modified algorithm with a total ofN states. Let the
marked amplitudes at timet be denoted byki(t), i
51, . . . ,r , and the unmarked amplitudes byl i(t), i 5r
11, . . . ,N, where the initial distribution att50 is arbitrary.
Without loss of generality we assume that the number
marked states satisfies 1<r<N/2. Let the averages of th
amplitudes be denoted by

k̄~ t !5
1

r (
i 51

r

ki~ t !

for the marked states and by

l̄ ~ t !5
1

N2r (
i 5r 11

N

l i~ t !

for the unmarked states. The key observation is that the
tire dynamics dictated by Grover’s algorithm can be d
scribed in full by the time dependence of theaverages. Let
us define

C~ t !5
2

N
@~N2r ! l̄ ~ t !2rk̄~ t !#. ~1!

Consider any marked stateki(t). In each step of the algo
rithm this state is flipped toki8(t)52ki(t), so that the

marked average becomesk̄8(t)52 k̄(t). The unmarked
states, on the other hand, do not flip, so that the average
all states after the flip isx(t)5(1/N)@r k̄8(t)1(N2r ) l̄ (t)#
5C(t)/2. Rotation byp radians around the average is, b
definition, ki8(t)→2x(t)2ki8(t) and l i(t)→2x(t)2 l i(t).
Hence, ki(t)→C(t)1ki(t) and l i(t)→C(t)2 l i(t). There-
fore, the time evolution of all amplitudes~of both marked
and unmarked states! is independent of the state index, an
satisfies

ki~ t11!5C~ t !1ki~ t !, i 51, . . . ,r , ~2!

l i~ t11!5C~ t !2 l i~ t !, i 5r 11, . . . ,N. ~3!

By averaging over the states in Eqs.~2! and~3! we find that
the average marked and unmarked amplitudes obey fi
order linear coupled difference equations

k̄~ t11!5C~ t !1 k̄~ t !, ~4!

l̄ ~ t11!5C~ t !2 l̄ ~ t !. ~5!

These equations can be solved fork̄(t) and l̄ (t), and along
with the initial distribution this yields the exact solution fo
the dynamics of all amplitudes. We proceed to solve
recursion formulas for arbitrary complex initial condition
Let

f 1~ t !5 l̄ ~ t !1 iA r

N2r
k̄~ t !,
f

n-
-

er

t-

e

f 2~ t !5 l̄ ~ t !2 iA r

N2r
k̄~ t !.

Using the recursion formulas~4! and ~5! and a few steps of
algebra employing the definition ofC(t) given in Eq.~1!, we
find that f 1(t11)5eiv f 1(t) and f 2(t11)5e2 iv f 2(t).
Herev, which is real and satisfies

cosv5122
r

N
, ~6!

is identical to the frequency found by Boyeret al. in @16#.
The time evolution can now be written as

f 1~ t !5eivt f 1~0!,

f 2~ t !5e2 ivt f 2~0!.

Clearly, u f 1(t)u andu f 2(t)u are time-independent quantitie
The average amplitudes are

k̄~ t !52 iAN2r

4r
@eivt f 1~0!2e2 ivt f 2~0!#, ~7!

l̄ ~ t !5
1

2
@eivt f 1~0!1e2 ivt f 2~0!#. ~8!

Together with Eqs.~1!–~3! this provides the complete exac
solution to the dynamics of the amplitudes in the generali
Grover algorithm, for arbitrary initial conditions.

We turn to an analysis of several properties of the am
tudes and to a simplification of the result describing the
namics. Leta andf ~real or complex! be chosen such tha
a5Af 1(0) f 2(0), ande2if5 f 1(0)/ f 2(0). Using Eqs.~7!
and ~8!, the average amplitudes can be expressed conci
as follows:

k̄~ t !5AN2r

r
a sin~vt1f!, ~9!

l̄ ~ t !5a cos~vt1f!. ~10!

This shows that there is ap/2 phase difference between th
marked and unmarked amplitudes: when the average ma
amplitude is maximal, the average unmarked amplitude
minimal and vice versa.@Note that when the ratiol̄ (0)/k̄(0)
is real, a and f become real, with a25u l̄ (0)u2

1uk̄(0)u2r /(N2r ) and tanf5Ar /(N2r ) k̄(0)/ l̄ (0).# Sub-
tracting Eq.~4! from Eq. ~2!, and Eq.~5! from Eq. ~3! one
finds

ki~ t11!2 k̄~ t11!5ki~ t !2 k̄~ t !,

l i~ t11!2 l̄ ~ t11!52@ l i~ t !2 l̄ ~ t !#.

This means that

Dki[ki~0!2 k̄~0!, ~11!

D l i[ l i~0!2 l̄ ~0! ~12!



-

,
s
i
e

r
ru
a

pe
e
d
d

he

t
s to

r of

re

of
is

plex

the

e el-
of

b-
d

t
a
of

l

-

-
the
en
n

nce

n
n-
e
-

r,
n.

2744 PRA 60BIHAM, BIHAM, BIRON, GRASSL, AND LIDAR
are constants of motion. This allows us to simplify the ex-
pression for the time dependence of the amplitudes:

ki~ t !5 k̄~ t !1Dki , ~13!

l i~ t !5 l̄ ~ t !1~21! tD l i , ~14!

whereDki andD l i are given by the initial amplitude distri
bution ~at t50).

Equations~9!, ~10!, ~13!, and~14! are thus an alternative
simplified form describing the dynamics of the amplitude
In this picture all marked states evolve in unison, so it
sufficient to follow the time evolution of their average. Th
only feature distinguishing the states from one anothe
their initial deviation from the average. The same holds t
for the unmarked states, up to an alternation about their
erage.

From Eqs.~13! and ~14! it follows immediately that the
variances

sk
2~ t !5

1

r (
i 51

r

uki~ t !2 k̄~ t !u2, ~15!

s l
2~ t !5

1

N2r (
i 5r 11

N

u l i~ t !2 l̄ ~ t !u2 ~16!

are time independent. Now, when a measurement is
formed at timet, the probability that a marked state will b
obtained isP(t)5( i 51

r uki(t)u2. Since all the operators use
are unitary, the amplitudes satisfy the normalization con
tion

(
i 51

r

uki~ t !u21 (
i 5r 11

N

u l i~ t !u251

at all times. Using(y2 ȳ)25y22 ȳ2 (y is a random vari-
able!, we find from Eqs.~15! and ~16!

(
i 51

r

uki~ t !u25rsk
21r uk̄~ t !u2,

(
i 5r 11

N

u l i~ t !u25~N2r !s l
21~N2r !u l̄ ~ t !u2.

Therefore, the probability of measuring a marked state
time t is given by

P~ t !5Pav2DP cos 2@vt1Re~f!#, ~17!

where

Pav512~N2r !s l
22

1

2
@~N2r !u l̄ ~0!u21r uk̄~0!u2#,

DP5
1

2
u~N2r ! l̄ ~0!21rk̄~0!2u.

The maximal value that this probability can obtain during t
evolution of the algorithm is
.
s

is
e
v-

r-

i-

at

Pmax5Pav1DP.

Given an arbitrary initial distributions ofr marked andN

2r unmarked states, with known averagesk̄(0) and l̄ (0),
respectively, the optimal measurement times are after

T5@~ j 11/2!p2Re~f!#/v

iterations, for j 50,1,2, . . . when the probability of obtain-
ing a marked state isPmax. An important conclusion is tha
to determine the optimal measurement times, all one need
know are the average initial amplitudes and the numbe
marked states. Expandingv in the expression forT in r /N
!1 ~at j 50) one finds that the number of iterations befo
the optimal measurement probabilityPmax is obtained is
O(AN/r ). However, the value ofPmax can vary significantly,
depending on the statistical properties~average and variance!
of the initial amplitude distribution. The expected number
repetitions of the entire algorithm until a marked state
obtained is 1/Pmax.

We next consider the shapes generated in the com
plane during the time evolution ofk̄(t)5$Re@ k̄(t)#,
Im@ k̄(t)#% and l̄ (t)5$Re@ l̄ (t)#,Im@ l̄ (t)#%. Equations~9! and
~10! turn out to be identical to the equations that describe
polarization of electromagnetic plane waves@18#. By this
analogy, the contours generated by these equations ar
lipses in the complex plane. The major axis of the ellipse
l̄ (t) subtends an angleh with the real axis, whereh is given
by eih5a/uau. The length of the major@minor# axis of the
ellipse isa5uaucosh(Imf) @b5uausinh(Imf)]. Herea and
f are the parameters which appear in Eqs.~9! and~10!. The
ellipse of k̄(t) has a similar shape, but its major axis su
tends an angleh1p/2 with the real axis and its major an
minor axes are longer by a factor ofA(N2r )/r .

When the ratiol̄ (0)/k̄(0) is real, one can easily show tha
u f 1(0)u5u f 2(0)u. In this case the amplitudes evolve along
straight line in the complex plane, in analogy to the case
the linear polarization of light, andPmax512(N2r)sl

2 . The
best case, in whichPmax51, is obtained for Grover’s origina
~uniform amplitudes! initialization, wheres l

250.
A limit in which the algorithm is totally useless is ob

tained when eitherf 1(0)50 or f 2(0)50. In this case the
success probabilityP(t) remains constant during the evolu
tion of the algorithm. This corresponds to the case of
circular polarization of light. The worst case appears wh
Pmax5P(t)50 for anyt. In this case, which is obtained whe
sk

25 f 1(0)5 f 2(0)5 k̄(0)5 l̄ (0)50 and (N2r )s l
251, the

algorithm can never find the marked states.
Finally, consider the case where the average and varia

of the initial amplitude distribution arenot known, but dif-
ferent runs of the algorithm use initial amplitudes draw
from the same distribution. Naively, one could pick a ra
dom number of iterationsTr and thus find a marked stat
with probability P(Tr). Correspondingly, the expected num
ber of repetitions of the entire algorithm using the sameTr
would be 1/P(Tr) until a marked state is found. Howeve
P(Tr) could be very small. A better strategy is now show
From Eqs.~6! and ~17! it follows that the period of oscilla-
tion of P(t) depends only onr /N, while the details of the
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initial amplitude distribution are all in the phasef. Consider
the case where one runs the algorithm twice, taking meas
ments at timesT1 and T2, respectively, whereT22T1
5p/(2v). From Eq.~17! it is clear that in one of the two
measurementsP(T)>Pav>Pmax/2. In this case we need
twice as many repetitions to obtain at least half the succ
probability compared to the case when the optimal meas
ment time is known. The slowdown is thus at most a fac
of 4.

In this work we generalized Grover’s quantum search
gorithm to apply for initial input distributions which are non
uniform. In fact, it was shown that by simply omitting th
first step of Grover’s original algorithm, wherein a unifor
superposition is created over all elements, a more gen
algorithm results which applies toarbitrary initial distribu-
tions. To analyze the algorithm, we found that the time e
lution of the amplitudes of the marked and unmarked sta
can be described by first-order linear difference equation
al
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with some special properties. The most important of thes
that all amplitudes essentially evolve uniformly, with the d
namics being determined completely by the average am
tudes. This observation allowed us to find an exact solut
for the time evolution of the amplitudes. A significant co
clusion from this solution is that generically the generaliz
algorithm also has anO(AN/r ) running time, thus being
more powerful than any classical algorithm designed to so
the same task. An important future application of these
sults is in the study of the robustness of Grover’s algorit
against errors in the unitary operations used to implement
algorithm. Our results imply that the algorithm can tolerate
moderate amount of noise in the amplitude initialization p
cedure. Work extending these results to the case of erro
the inversion about average step, and in the case of an
trary unitary transformation, is in progress.

This work was initiated during the Elsag-Bailey – IS
Foundation research meeting on quantum computation.
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