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Grover’s quantum search algorithm for an arbitrary initial amplitude distribution
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Grover's algorithm for quantum searching is generalized to deal with arbitrary initial complex amplitude
distributions. First-order linear difference equations are found for the time evolution of the amplitudes of the
marked and unmarked states. These equations are solved exactly. New expressions are derived for the optimal
time of measurement and the maximal probability of success. They are found to depend on the averages and
variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.
Our results imply that Grover’s algorithm is robust against modest noise in the amplitude initialization proce-
dure.[S1050-2947@9)09009-5

PACS numbegps): 03.67.Lx, 89.70+c

It is now firmly established that there exists a gap betweestan} unitary transformation to take the place of the Had-
the computational power of quantum and classical computamard transform in the original setting?7].
ers. A dramatic example of the speedup offered by quantum In this paper, we generalize Grover’s algorithm by allow-
computers is Grover's quantum search algoritf?] for ing for an arbitrary comple>_< initial amp}itude distrjbution
finding a marked element amomgpossible input values, in We present an exact solution for'th_e time e_vplutlon of t_he
the presence of an oracle. On average a classical compufdfPlitudes under these general initial conditions. We find
would need\/2 oracle queries, whereas a quantum computefat the generalized search algorithm still requitds/N/r)

. . . iterations, where is the number of marked states, although
_cr:;\]r; ?niczr:t]g::zg z)r;eGSrg\r/neer’;arseks,Slflgga rr:s?gr(/nﬁtﬁg?aeéﬁiat ithe maximal success probability can be small for certain un-
P tf vorable initial amplitude distributions. The case of an arbi-
proves the enhanced power of quantum computers comparg

lassical ¢ hole cl ¢ le-based probl ry initial amplitude distribution is particularly relevant in
to classical ones for a whole class of oracle-based problemg,o"resence of unitary errors in the gates implementing the

for which the bound on the efficiency of classical algorithms;tialization step, such as over- or underrotations. Such er-
is known. _ _ rors can result in a deviation from the uniform initial ampli-
Grover's algorithm can be represented as searching a prégde distribution assumed in the usual treatment of Grover’s
image of an oracle-computable Boolean function, which camy|gorithm, and as detailed below, our analysis shows that the
only be computed forward, but whose inverse cannot be dialgorithm will still work in the presence of modest errors.
rectly computed. Such a function D —{0,1} whereD is We will now present the modified Grover algorithm and
a set ofN domain valuegor statey and the preimages of the derive difference equations for the time evolution of the am-
value 1 are called thmarkedstates. The problem is to iden- plitudes in it. We then solve these equations exactly and
tify one of the marked states, i.e., some=D such that analyze the results. Léi(t) [I(t)] denote the amplitude of
F(v)=1. Problems of this type are very common. One im-the marked unmarked states aftet iterations of the algo-
portant example, from cryptography, is searching for the keyithm. It was shown in16] that the amplitude of the marked
K of the data encryption standaf@ES) [3], given a known states increases ak(t)=sinw(t+1/2)]/\r, where
plaintextP and its ciphertexC, whereF=1 if the plaintext =2 arcsing/r/N). At the same time the amplitude of the
and ciphertext matchi.e., Ex(P)=C whereEy is the en- unmarked states decreases|@y=cogw(t+1/2)]/\N—r.
cryption functiorj and F=0 otherwise. Other examples are For N>r the optimal time to measure and complete the cal-
solutions of nondeterministic polynomial tingflP) and NP-  culation is afterT=0O(/N/r) iterations, wherk(t) is maxi-
complete problems, which include virtually all the difficult mal. In our modified algorithm we simply omit the initializa-
computing problems in practidd]. tion step from Grover’s original algorithm. It thus consists of
A large number of results followed Grover’s discovery. the following stages.
These results include a props] that the algorithm is as (1) Use any initial distribution of marked and unmarked
efficient as theoretically possiblé], a variety of applica- states, e.g., the final state of any other quantum algorittom
tions in which the algorithm is used in the solution of othernot initialize the system to the uniform distributipn
problems[7—14], and recently an experimental implementa- (2) Repeat the following step3 times: (a) Rotate the
tion using a nuclear magnetic resonar®MR) quantum marked states by a phase sfradians.(b) Rotate all states
computer[15]. Several generalizations of Grover’s original by 7 radians around the average amplitudelbftates. This
algorithm have been published, the first of which dealt withis done by(i) Hadamard transforming every quhit,) rotat-
the case of more than one marked sfdt]. The algorithm ing the |0) state by a phase of radians, andiii) again
was further generalized by allowing an arbitrafyut con-  Hadamard transforming every qubit.
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(3) Measure the resulting state. o r
Next, we analyze the time evolution of the amplitudes in f_(t)=1(t)—i mk(t).
the modified algorithm with a total oN states. Let the
marked amplitudes at tim¢ be denoted byki(t), i ysing the recursion formula@) and(5) and a few steps of

=1,...r, and the unmarked amplitudes Hy(t), i=r  gigepbra employing the definition @f(t) given in Eq.(1), we
+1,... N, where the initial distribution at=0 is arbitrary.  fing that f+(t+1):eiwf+(t) and f_(t+1):efiwf_(t)'
Without loss of generality we assume that the number ofyqre » which is real and satisfies

marked states satisfies<t <N/2. Let the averages of the ’

amplitudes be denoted by r
cosw=1-2—, (6)

1« N
k(t)= T 21 ki(t) is identical to the frequency found by Boyet al. in [16].

The time evolution can now be written as

for the marked states and by f,(t)=€“f (0)
+ - + ’

N

Tl S f(h=e ' _(0).

N—r £ +
o Clearly,|f, (t)| and|f_(t)| are time-independent quantities.

for the unmarked states. The key observation is that the enthe average amplitudes are

tire dynamics dictated by Grover’s algorithm can be de- =T
scribed in full by the time dependence of taeerages Let Tty — i T raiet _ ot
us define k()=—i\/—1e“T.(0)—ef (0], (@)
2 T . T/ 1 i wt —iwt
CH=FLN=NI)=rk(®)]. (1) H()=5e“ T, (0)+e " f_(0)]. 8

Consider any marked state(t). In each step of the algo- Together with Eqs(1)—(3) this provides the complete exact
rithm this state is flipped tdk (t)=—k;(t), so that the solution to the dynamics of the amplitudes in the generalized
| ’

Ty T Grover algorithm, for arbitrary initial conditions.
marked average becomde (1)=—k(t). The unmarked We turn to an analysis of several properties of the ampli-

states, on the other hapd, do not fI|p,§o that the average OViiiges and to a simplification of the result describing the dy-
all states after the flip ig(t)=(I/N)[rk’(t) +(N=r) I(t)]  namics. Leta and ¢ (real or complex be chosen such that
=C(t)/2. Rotation by radians around the average is, by ,— f,(0)f_(0), ande?¢=f, (0)/f_(0). Using Egs.(7)
definition, ki(t)—2x(t)—ki(t) and Ii(t)—2x(t)—li(t).  and(8), the average amplitudes can be expressed concisely
Hence, k;(t)—C(t) +ki(t) and I;(t)—C(t)—I;(t). There- zs follows:

fore, the time evolution of all amplitude®f both marked

and unmarked statess independent of the state index, and _ N-r
satisfies k(t)=\/——asinwt+ ¢), 9
ki(t+1)=C(t)+k(t), i=1,...r, (2 |_(’[)=ozc05{w’[+¢) (10
li(t+1)=C(O)—1i(t), i=r+1,...N. () This shows that there is a/2 phase difference between the

) ) . marked and unmarked amplitudes: when the average marked
By averaging over the states in E¢8) and(3) we find that  amplitude is maximal, the average unmarked amplitude is

the average marked _and unmarked_ amplitudes obey firSFﬁinimal and vice versgNote that when the ratiF(O)/?(O)
order linear coupled difference equations ) ) 2. Tren 2
is real, « and ¢ become real, with a*=]l(0)

K(t+1)=C(t) k1), @) +|k(0)|2r/(N—r) and tanp=r/(N—r)k(0)/1(0).] Sub-
tracting Eq.(4) from Eq. (2), and Eq.(5) from Eg. (3) one
T(t+1)=C(H)-T(0). "

_ _ ki(t+1)—k(t+1)=ki(t) —k(1),
These equations can be solved kgt) and | (t), and along
with the initial distribution this yields the exact solution for Lt+1)—1(t+1)=—[1,(t)—1(t)].
the dynamics of all amplitudes. We proceed to solve the
recursion formulas for arbitrary complex initial conditions. This means that
Let

Aki=ki(0)—k(0), (11)

_ ) r
P O=1O+ Gk, Ali=1,(0)—T(0) (12)
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are constants of motianThis allows us to simplify the ex- Pnas= Pay+ AP.
pression for the time dependence of the amplitudes:

Given an arbitrary initial distributions of marked andN

—r unmarked states, with known average®) and(0),
respectively, the optimal measurement times are after

k() =k(t)+Ak;, (13

L(t)=1(t)+(—1)'Al, (14)

T=[(j+1/27—R /
whereAk; andAl; are given by the initial amplitude distri- L )7 Re($) o
bution (att=0). . . . - .
. . iterations, forj=0,1,2 ... when the probability of obtain-
. Eq_u_atlons(9), (10), .(1.3)’ and(14) are thus an alternqmve, ing a markedjstate iR nax- An importffnt conclli/sion is that
simplified form describing the dynamics of the amplltude_s.to determine the optimal measurement times, all one needs to

In this picture all marked states evolve in unison, so it ISy now are the average initial amplitudes and the number of

sufficient to follow the time evolution of their average. The.marked states. Expanding in the expression fofl in r/N

only feature distinguishing the states from one another IS4 (atj=0) one finds that the number of iterations before

their initial deviation from the average. The same holds true[he optimal measurement probabili,., is obtained is
max

for the unmarked states, up to an alternation about their av- o
P O(+/N/r). However, the value dP ., can vary significantly,

erege. depending on the statistical i d variang
From Egs.(13) and (14) it follows immediately that the epending on the statistical propertiaserage and variante
variances of the initial amplitude distribution. The expected number of

repetitions of the entire algorithm until a marked state is
1] o obtained is 1P .
oi(t)= - 2 [ki(t)—k(t)|?, (15) We next consider the shapes generated in the complex
=1 plane during the time evolution ofk(t)={Rdgk(t)],
1 N Im[k(t)]} andl (t)={R4 I (t)],Im[1(t)]}. Equationg9) and
oB(t) = e S =T1(1)2 (16) (10 turn out to be identical to the equations that describe the
iSr+1 polarization of electromagnetic plane wavids]. By this
analogy, the contours generated by these equations are el-
are time independent. Now, when a measurement is pefipses in the complex plane. The major axis of the ellipse of
formed at timet, the probability that a marked state will be I_(t) subtends an anglg with the real axis, where is given
obtained isP(t)==!_,|k;(t)|%. Since all the operators used by € 7= al|a|. The length of the majoEm,inor] axis of the
are unitary, the amplitudes satisfy the normalization Condi'ellipse isa=||cosh(Imp) [b=]|a|sinh(Im¢)]. Here & and

tion ¢ are the parameters which appear in E§s.and(10). The
r N ellipse of k(t) has a similar shape, but its major axis sub-
2 |ki(t)|2+ 2 ||i(t)|2:1 tends an angley+ 7/2 with the real axis and its major and
=1 i=r+l minor axes are longer by a factor g{N—r)/r.

_ = _ When the ratid (0)/k(0) is real, one can easily show that
at all imes. Using(y—y)“=y“—y* (y is a random vari- | (0)|=|f_(0)|. In this case the amplitudes evolve along a

ablg, we find from Eqs(15) and (16) straight line in the complex plane, in analogy to the case of
r the linear polarization of light, an&male—(N—r)o]z. The
> Jki(t)[2= rol+rlk(t)|?, best case, in whicR =1, is obtained for Grover’s original
i=1 (uniform amplitudesinitialization, wherea|2=0.

A limit in which the algorithm is totally useless is ob-
- ’ — tained when eithef ,(0)=0 or f_(0)=0. In this case the
i:ZH (D= (N=r)o+(N=r)[I ()]~ success probability?(t) remains constant during the evolu-
tion of the algorithm. This corresponds to the case of the
Therefore, the probability of measuring a marked state agircular polarization of light. The worst case appears when
time t is given by Pmax=P(t)=0 for anyt. In this case, which is obtained when
o2=f,(0)=f_(0)=k(0)=1(0)=0 and N—r)o?=1, the
P(t)=Ps,—APcosJ ot+Re(¢)], (17)  algorithm can never find the marked states.
Finally, consider the case where the average and variance
where of the initial amplitude distribution araot known, but dif-
ferent runs of the algorithm use initial amplitudes drawn
_ 2 1 TV 2L k(02 from the same distribution. Naively, one could pick a ran-
Pay=1=(N=1)af=S[(N=N)[I(0)[*+r[k(0)|?], St v O P
dom number of iterationd, and thus find a marked state
with probability P(T,). Correspondingly, the expected num-
ber of repetitions of the entire algorithm using the safme
would be 1P(T,) until a marked state is found. However,
P(T,) could be very small. A better strategy is now shown.
The maximal value that this probability can obtain during theFrom Eqgs.(6) and (17) it follows that the period of oscilla-
evolution of the algorithm is tion of P(t) depends only om/N, while the details of the

N

AP= ;|(N—r)l_(0)2+rk_(0)2|.
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initial amplitude distribution are all in the phage Consider  with some special properties. The most important of these is
the case where one runs the algorithm twice, taking measur#hat all amplitudes essentially evolve uniformly, with the dy-
ments at timesT, and T,, respectively, whereT,—T,;  namics being determined completely by the average ampli-
=7/(2w). From Eq.(17) it is clear that in one of the two tudes. This observation allowed us to find an exact solution
measurement®(T)=P,,=P,.,/2. In this case we need for t_he time ev_olut|on _of the amplltude_s. A significant con-
twice as many repetitions to obtain at least half the succesgusion from this solution is that generically the generalized
probability compared to the case when the optimal measuréilgorithm also has a®(yN/r) running time, thus being

ment time is known. The slowdown is thus at most a factofMore powerful than any classical algorithm designed to solve
of 4. the same task. An important future application of these re-

sults is in the study of the robustness of Grover’s algorithm
against errors in the unitary operations used to implement the
algorithm. Our results imply that the algorithm can tolerate a
moderate amount of noise in the amplitude initialization pro-

cedure. Work extending these results to the case of errors in

superposition is created over all elements, a more 9€N€"Re inversion about average step, and in the case of an arbi-
algorithm results which applies tarbitrary initial distribu- trary unitary transformation, is in ’progress

tions. To analyze the algorithm, we found that the time evo-
lution of the amplitudes of the marked and unmarked states This work was initiated during the Elsag-Bailey — ISl
can be described by first-order linear difference equations Foundation research meeting on quantum computation.

In this work we generalized Grover’s quantum search al
gorithm to apply for initial input distributions which are non-
uniform. In fact, it was shown that by simply omitting the
first step of Grover’s original algorithm, wherein a uniform

[1] L. K. Grover, in Proceedings of the Twenty-Eighth Annual [10] G. Brassard, P. Hoyer, and A. Tapp, e-print quant-ph/9705002.
Symposium on the Theory of Computit®CM Press, New [11] B. M. Terhal and J. A. Smolin, Phys. Rev. 58, 1822(1998.

York, 1996, p. 212. [12] G. Brassard, P. Hoyer and A. Tapfutomata, Languaes and
[2] L. K. Grover, Phys. Rev. Letf79, 325(1997. Programming,Vol. 1443 (Springer Verlag, Berlin, 1998 p.
[3] D. R. Stinson, Cryptography: Theory and PracticéCRC 820, e-print quant-ph/9805082.
Press, Boca Raton, FL, 1995 [13] N. J. Cerf, L. K. Grover, and C. P. Williams, e-print
[4] M. R. Garey and D. S. Johnso@pmputers and Intractability: quant-ph/9806078.
a Guide to the Theory of NP-Completendgseeman, San [14] E. Farhi and S. Gutmann, Phys. Rev5& 2403(1998.
Francisco, 1979 [15] I. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev. A
[5] C. Zalka, e-print quant-ph/9711070. 80, 3408(1998.
[6] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani,[16] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Fortschr. Phys.
SIAM J. Comput.26, 1510(1997. 46, 493 (1998.
[7] C. Durr and P. Hoyer, e-print quant-ph/9607014. [17] L. K. Grover, Phys. Rev. Let80, 4329(1998.
[8] L. K. Grover, e-print quant-ph/9607024. [18] See, e.g,. M. Born and E. WolPrinciples of Optics(Perga-

[9] L. K. Grover, Phys. Rev. Letf79, 4709(1997). mon Press, London, 195%. 24.



