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Computing local invariants of quantum-bit systems

Markus Grassl,* Martin Rötteler,† and Thomas Beth‡

Institut für Algorithmen und Kognitive Systeme, Universita¨t Karlsruhe, Am Fasanengarten 5, D-76 128 Karlsruhe, Germany
~Received 18 December 1997; revised manuscript received 29 May 1998!

We investigate means to describe the nonlocal properties of quantum systems and to test if two quantum
systems are locally equivalent. For this we consider quantum systems that consist of several subsystems,
especially multiple quantum bits, i.e., systems consisting of subsystems of dimension 2. We compute invariant
polynomials, i.e., polynomial functions of the entries of the density operator that are invariant under local
unitary operations. As an example, we consider a system of two quantum bits. We compute the Molien series
for the corresponding representation, which gives information about the number of linearly independent in-
variants. Furthermore, we present a set of polynomials that generate all invariants~at least! up to degree 23.
Finally, the use of invariants to check whether two density operators are locally equivalent is demonstrated.
@S1050-2947~98!10609-1#

PACS number~s!: 03.67.2a, 02.20.Hj
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I. INTRODUCTION

Nonlocality is one of the astonishing phenomena in qu
tum mechanics. Well-known examples are EPR pairs@1# and
the GHZ state@2#. States of quantum codes contradict loc
realism, too@3#. One common feature of these states is t
the nonlocal properties do not change under local trans
mations, i.e., unitary operations acting independently on e
of the subsystems. Thus, any function invariant under lo
unitary transformations~LUT! can be used to describe the
nonlocal properties@4,5#. Here we study polynomials that ar
invariant under local unitary transformations. Among the
there are, e.g., the coefficients of the characteristic poly
mial of a density operator or of the reduced density ope
tors. The paper extends the work of Rains@6#, in which he
showed how, in principle, all polynomial invariants can
computed. We present further reductions of complexity t
make the computation of polynomial invariants feasible
least for small systems.

The paper is organized as follows. In Sec. II we consi
the linear action and the action by conjugation of mat
groups on polynomials. Then we establish a connection
tween invariant polynomials and the algebra of matric
commuting with all elements of the group. A physical inte
pretation of the invariant polynomials is given by relatin
them to some observables. Mainly classical results for th
algebras are recalled in Sec. III. In Sec. IV a method
construct a vector space basis of these algebras is pres
for the case of two-dimensional subsystems. Furtherm
we present results that imply a further reduction of the co
plexity to compute all invariants. The special situation
pure states and subspaces is considered in Sec. V. In Se
we compute the Molien series and a set of invariants fo
two-quantum-bit system. We conclude in Sec. VII with e
amples for the application of these invariants.
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II. POLYNOMIAL INVARIANTS

A. Operation on polynomials

The groupGL(n,F) of invertible n3n matrices over the
field F operates on the polynomialsp(x1 ,...,xn)
PF@x1 ,...,xn# in the following manner:

pg~x1 ,...,xn!ªp~ x̃1 ,...,x̃n!,

where ~ x̃1 ,...,x̃n!ª~x1 ,...,xn!g, ~1!

i.e., each variable is replaced by the linear combination
tained by multiplying the vector of variables by the grou
elementgPGL(n,F).

On n3n matrices the groupGL(n,F) acts by conjuga-
tion. Hence polynomialsf (r i j )5 f (r11,...,rnn) in the entries
r i j of an n3n density operatorr are then acted upon b
conjugation, i.e.,

f g~r i j !5 f ~ r̃ i j !, where r̃ªrg5g21
•r•g. ~2!

Given a subgroupG<GL(n,F), we are interested in
polynomials that are fixed by all elements ofG under the
action defined by either Eqs.~1! or ~2!. These invariant poly-
nomials~just calledinvariants! form an algebra over the field
F since any linear combination and any product of invaria
is invariant under the action of the group, too. It is sufficie
to study homogeneous polynomials as each homogen
polynomial of degreek remains homogeneous of the sam
degree under the operation ofG and every polynomial can
be decomposed additively into its homogeneous compone

For the class of so-calledreductive groups ~e.g., finite
groups, unitary groups! the invariant ring is finitely gener-
ated~cf. @7#!, i.e., every invariant can be expressed in ter
of some algebra generators. These so-calledfundamental in-
variantscan be chosen to be homogeneous polynomials
small degree. Under this assertion the task is to find a sys
of fundamental invariants such that any other invariant c
be expressed as a polynomial of these. In what follows
focus on this task for invariants under the action of ten
products of unitary groups on density operators by conju
tion given by Eq.~2!.
1833 © 1998 The American Physical Society
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B. Invariant matrices

Instead of studying the invariant polynomials directly, w
use the relation between homogeneous polynomials in
entries of a density operatorr and constant matrices.

Lemma 1.For every homogeneous polynomialf of degree
k in the entries of the density operatorr there exists a matrix
F such that

f ~r i j !5 f F~r i j !5tr~F•r ^ k!. ~3!

Proof. This follows directly from the fact that the matri
r ^ k contains all monomials in the variablesr i j of degreek.

Next, we characterize invariant polynomials in terms
the corresponding matrices.

Theorem 2.A homogeneous polynomialf of degreek in
the entries of the density operatorr is invariant under the
operation of a compact groupG<GL(n,F) by conjugation if
and only if f 5 f F for a matrixF that is invariant under con
jugation by (g21) ^ k ~equivalently, if and only if the matrix
F commutes withg^ k! for all gPG.

Proof. Conjugation ofr by g corresponds to conjugatio
of F by (g21) ^ k as shown by the following calculation:

If F commutes withg^ k, then the equality ofF̃ andF im-
plies f F„(g

21rg) i j …5 f F(r i j ).
If on the other handf is invariant under the operation o

G, for any matrix F with f 5 f F , we have f F„(g
21rg) i j …

5 f F(r i j ). Since the groupG is compact, we can averag
over the group~cf. @8#! and obtain the matrix

F̄5E
gPG

„g^ k
•F•~g21! ^ k

…dmG~g!. ~4!

By construction, F̄ is invariant under conjugation b
(g21) ^ k and furthermoref 5 f F̄ .

Using this theorem and lemma 1, we are in principle a
to compute invariants of the groupG starting from any ma-
trix F and computing a matrixF̄ that commutes withg^ k for
all gPG. But in practice, the integration~4! is very difficult
to perform. In Sec. III we will present a method to calcula
the matricesF directly without integration.

C. Physical interpretation of the polynomial invariants

Although we do not have full insight into the physic
interpretation of the polynomial invariants yet, we will rela
them to some observables.

Recall from Eq.~3! that all polynomial invariants of de
gree k can be written asf F(r i j )5tr(F•r ^ k). From F we
construct two Hermitian operators
e

f

e

M1ªF1F† and M2ª iF 2 iF †.

Both M1 and M2 commute withg^ k for all g5U1^¯

^ UNPU(n) ^ N sinceF ~and thusF†! commutes withg^ k

~cf. theorem 2!. Hence, the~real! mean values

^M1&ªtr~M1•r ^ k! and ^M2&ªtr~M2•r ^ k!

are also invariant under local unitary transformation. In pr
ciple they can be obtained by joint measurements ofk copies
of the quantum system with density operatorr.

III. INVARIANT ALGEBRAS

In order to compute all homogeneous invariants of deg
k it is sufficient to know the algebra of matrices that com
mute withg^ k for all gPG. Such algebras have been stu
ied, e.g., by Brauer for many classes of groups~cf. @9#!. For
the unitary group and tensor products of unitary groups,
have the following theorems and corollaries.

Theorem 3 (Brauer).The matrix algebraAn,k of matrices
that commute with any matrixU ^ k for UPU(n) is gener-
ated by the representationTn,k :Sk→GL(nk,C) of the sym-
metric groupSk that operates on the tensor product spa
(Cn) ^ k5V1^¯^ Vk by permuting thek spacesVi of di-
mensionn.

This result extends to tensor products of unitary group
Corollary 4. The algebra of matrices that commute wi

any matrix U1
^ k

^¯^ UN
^ k for UiPU(ni) is given by the

tensor product of the algebrasAni ,k .
To obtain the ‘‘natural’’ ordering of the tensor factors, w

have to conjugate the matrices by a permutation matrix.
Corollary 5. The algebraAn,k

(N) of matrices that commute
with any matrix (U1^¯^ UN) ^ k for UiPU(n) is conju-
gated to theN-fold tensor product of the algebraAn,k , i.e.,

An,k
~N!5s~An,k!

^ Ns21, sªTn,kN~t!. ~5!

Here t is the permutation that exchanges the macrocoo
nates and microcoordinates according to the isomorph
between the tensor product spaces,

~V^ N! ^ k and ~V^ k! ^ N ~where V5Cn!.

As a permutation on$1,...,k•N%, t mapsak1b11 to bN
1a11 ~for a50,...,N21, b50,...,k21!.

~The reader familiar with the theory of fast Fourier tran
formations will recognize the similarity to the ‘‘bit reversa
permutation’’ @10#.!

For the special situation of quantum-bit systems, i.e.,
group U(2), the dimension of the algebra is given by th
following theorem.

Theorem 6.The vector space dimension of the algeb
A2,k is given by the Catalan number@11#

C~k!5
1

k11 S 2k
k D .

Proof. This result is derived in@12# from a theorem of
Weyl @8#.

Note that the algebraA2,k was defined by thek! matrices
T2,k(p) for pPSk . As an algebra,A2,k is generated by the
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image of the generators ofSk , i.e., by only two matrices.
Theorem 6 states that, even as a vector space, fewer thak!
matrices are sufficient.

IV. BINARY TREES, PERMUTATIONS, AND ALGEBRAS

A. One quantum bit

The mapping~3! from invariant matrices to invariant ho
mogeneous polynomials is a vector space homomorph
Thus, in order to compute all linearly independent homo
neous invariants of degreek for tensor products of the grou
U(2), it is sufficient to consider a vector space basis of
algebraA2,k . Such a basis can be constructed starting fr
binary trees withk nodes, mapping them to permutations
k letters, and finally obtaining matrices via the representa
T2,k . The construction resembles some of the many beau
combinatorial properties of Catalan numbers~cf. @11,13#!.

Let Bk denote a labeled ordered binary tree withk nodes,
i.e., each node in the tree but the root has a father, and
node in the tree has at most one left and at most one r
son. The labeling of thek nodes of the tree with the numbe
$1,...,k% is obtained by traversing the nodes in the order ro
left subtree, right subtree. Figure 1 shows all distinct bin
trees with three nodes labeled in that manner.

A maximal right pathin the binary treeBk is a sequence
of nodes (r 0 ,r 1 ,...,r j ) such that each of the nodesr i 11 is
the right son of the noder i , r 0 is not the right son of any
node, andr j has no right son.

Given the setR(Bk) of all maximal right paths of a bi-
nary treeBk we define a permutationp(Bk)PSk by the prod-
uct of cycles

p~Bk!5 )
~r 0 ,r 1 ,...,r j i

!PR~Bk!
~r 0r 1¯r j i

!. ~6!

For example, for the trees of Fig. 1 we get the five permu
tions ~1!~2!~3!, ~1!~2 3!, ~1 3!~2!, ~1 2!~3!, and~1 2 3!.

FIG. 1. The five distinct ordered binary trees with three nod
.
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Let Bk denote the set of all distinct ordered binary tre
with k nodes labeled in the manner described before,
Pk5p(Bk) be the set of permutations obtained by the ma
ping p. Using this notation, we can formulate the followin
theorem.

Theorem 7. The set of matricesMkªT2,k(Pk)
5$T2,k„p(B)…:BPBk% forms a vector space basis of the a
gebraA2,k .

Proof. For k50 andk51 the statement is obviously true
For k.1, we partition the setBk of binary trees withk

nodes intok classesBk, j ( j 50,...,k21). The classBk, j con-
sists of all trees withj nodes in the left subtree of the roo
The general form of a tree in the classBk, j is shown in Fig.
2.

For j ,k21 in each of the trees,BPBk, j , j 12 is a right
son of 1, and thusp(B) maps 1 toj 12. For j 5k21, the
root 1 has no right son and thusp(B) fixes 1. To combine
these two cases, we identifyk11 and 1. HenceT2,k„p(B)…
maps ue1& to uej 12&, where uei&5u0& ^ i 21u1&u0& ^ k2 i . This
shows that forBPBk, j

tr~ ue1&^ej 812uT2,k„p~B!…!5d j , j 8 .

Therefore, for j Þ j 8 the matrices in the setsT2,k„p(Bk, j )…
andT2,k„p(Bk, j 8)… are mutually linearly independent.

For fixed j , each permutationp(B) for a treeBPBk, j
with left and right subtreesBl and Br ~see Fig. 2! can be
written in the form

p~B!5~1j 12!•p~Bl !•p~Br !,

where the permutationsp l5p(Bl) and p r5p(Br) operate
on the sets$2,...,j 11% and $ j 12,...,k%, respectively. The
corresponding representations are ‘‘shifted’’ tensor produ
i.e.,

.
FIG. 2. General form of a tree in the classBk, j . The subtrees

Bll , Blr , Brl , andBrr might be empty. Furthermore, forj 50 ~or
j 5k21! the left subtreeBl ~or the right subtreeBr! is empty.
T2,k„p~B!…

5T2,k„~1j 12!…•„12 j 11^ T2,k2 j 21~p r8!…•„121^ T2,j~p l8! ^ 12k2 j 21…5T2,k„~1j 12!…•„121^ T2,j~p l8! ^ T2,k2 j 21~p r8!…,
ion
wherep l8PSj and p r8PSk2 j 21 are obtained by relabeling
By the induction hypothesis, the matrices corresponding
the subtreesBl andBr are linearly independent for differen
trees. Thus we have shown that the matrices inMk are lin-
early independent. It remains to show that they form a ba
of A2,k . But this follows from theorem 6 together with th
fact that there are exactlyC(k) different ordered binary tree
with k nodes~cf. @14#, p. 389!.
to

is

B. Multiple quantum bits

In order to compute a basis of the algebraAn,k
(N) for an

N-particle system, we define the following representat
Tn,k

(N) :(Sk)
N→GL(nkN,C) of the N-fold direct product of the

symmetric groupSk :

~p1 ,...,pN!°s•„Tn,k~p1! ^¯^ Tn,k~pN!…•s21



f

m

er
g

ly
ns

Th
u

nt

a

n
f

i-
-
tion

t

re-
id-
ry
and

er
nly
ub-
sub-

tion
s

p-

e
ng

n-

the

17

1836 PRA 58MARKUS GRASSL, MARTIN RÖTTELER, AND THOMAS BETH
@where the matrixs is given by Eq.~5!#.
In the special case ofN quantum bits~i.e.,n52! combin-

ing theorem 7 and corollary 5 we obtain the following.
Corollary 8. The set of matricesT2,k

(N)(P k
N) is a vector

space basis of the algebraA2,k
(N) .

So far, we are able to compute a vector space basis
A 2,k

(N) as follows: ~i! Generate the setBk of all different
binary trees;~ii ! generate the set of permutationsPk obtained
by construction~6!; and ~iii ! for eachN-tuple of permuta-
tions (p1 ,...,pN) apply the representationT2,k

(N) , i.e., com-
pute the tensor product of the representationsT2,k(pn).

Instead of computing a matrix for each of the (k!) N tuples
of permutations in (Sk)

N, it is sufficient to consider only the
C(k)N permutations, implying a complexity reduction fro
O(kkN) to O(4kN).

Using Eq.~3!, we get a set of polynomials invariant und
local transformations spanning the vector space of homo
neous polynomial invariants of degreek.

For anyN-tuple p5(p1 ,...,pN)P(Sk)
N of permutations

we obtain a homogeneous invariant of degreek given by

f p1 ,...,pN
~r i , j !ªtr„T2,k

~N!~p1 ,...,pN!•r ^ k
…. ~7!

Clearly, there exist relations between the invariant po
nomials obtained from the tuple of permutatio
(p1 ,...,pN)P(Sk)

N ~also with varyingk!. Some of these
relations can be expressed in terms of the permutations.
allows a further reduction of the number of tuples of perm
tations that have to be considered to compute all invaria

Theorem 9.If ( p1 ,...,pN) and (p18 ,...,pN8 ) are ‘‘simul-
taneously’’ conjugated, i.e., there existstPSk such thatpn8
5t21pnt for all nP$1,...,N%, then f p1 ,...,pN

(r i j )

5 f p
18 ,...,p

N8
(r i j ).

Proof. Simultaneous conjugation of the permutationspn

by t corresponds to permuting the tensor factors inr ^ k by t,
keepingr ^ k fixed as a whole. Thusf p1 ,...,pN

(r i j ) does not
change.

Next we give a condition on the permutations when
invariant can be written as a product of invariants.

Theorem 10. If the subgroup H<Sk generated by
p1 ,...,pN is not transitive, then the homogeneous invaria
f p1 ,...,pN

(r i j ) of degreek is a product of invariants o
smaller degree.

TABLE I. Number of pairs (p1 ,p2)P(Sk)
2 to be considered

for the construction of invariants using the different theorems.

k (k!) 2 C(k)2 Th. 9 Th. 10
Th. 9
Th. 10

Th. 9
Th. 10
Th. 11

1 1 1 1 1 1 1
2 4 4 4 3 3 2
3 36 25 10 15 6 3
4 576 196 36 97 20 10
5 14 400 1 764 114 733 60 22
6 518 400 17 424 496 6 147 291 100
7 25 401 600 184 041 2 142 55 541 1 310 361
8 1 625 702 400 2 044 900 10 758 530 773 6 975 1 7
or

e-

-

is
-
s.

n

t

Proof. If H is not transitive, it defines a nontrivial part
tion of the set$1,...,k% into orbits. By simultaneous conju
gation using theorem 9, we can assume that the parti
$1,...,k1% and $k111,...,k% respects the orbits. Thus, forn
51,...,N each permutationpn can be written as a produc
pn5pn8•pn9 with pn8PSk1

operating on$1,...,k1% and pn9

PSk2
operating on$k111,...,k% (k11k25k). Furthermore,

f p1 ,...,pN
~r i j !5tr„T2,k

~N!~p1 ,...,pN!•r ^ k
…

5tr~„T2,k1

~N! ~p18 ,...,pN8 !

^ T2,k2

~N! ~p19 ,...,pN9 !…•r ^ k!

5tr„T2,k1

~N! ~p18 ,...,pN8 !•r ^ k1
…

3tr„T2,k2

~N! ~p19 ,...,pN9 !•r ^ k2
…

5 f p
18 ,...,p

N8
~r i j !• f p

19 ,...,p
N9
~r i j !.

For the case of two quantum bits, Table I shows the
duction of the number of pairs of permutations to be cons
ered using the construction of permutations from bina
trees, theorem 9, theorem 10, both theorems 9 and 10,
finally the combination of theorems 9, 10, 11.

V. PURE STATES AND SUBSPACES

The technique to compute polynomials invariant und
the action of tensor products of unitary groups does not o
apply to density operators of mixed states, but also to s
spaces and pure states. To study nonlocal properties of
spaces with basisuc i& ~e.g., quantum error-correcting codes!,
one can use the invariants of the corresponding projec
operatorP5( i uc i&^c i u. Pure statesuf& can be considered a
a one-dimensional subspace with projection operatorP
5uf&^fu, or equivalently as a mixed state with density o
eratorr5uf&^fu.

In that situation, we have the additional relationP2

5P (r25r) which can be used for a further reduction of th
number of permutations to be considered. The followi
theorem is quoted from@6#, adding an explicit proof.

Theorem 11.Let P be a projection operator. If for
(p1 ,...,pN)P(Sk)

N there exist different numbersl and m
such that for each permutationpn we havepn( l )5m, then
the invariant f p1 ,...,pN

(Pi j )5 f p
18 ,...,p

N8
(Pi j ) where the per-

mutationspn8PSk21 are obtained by identifying the pointsl
andm followed by a relabeling.

Proof. By theorem 9, we can assume without loss of ge
erality that l 51 andm52, i.e., pn(1)52 for all permuta-
tions pn . We will show that in the summation~7! there are
entries ofP2 that can be replaced by those ofP. The entries
of P^ k are of the form

~P^ k!~ i ~1!,...,i ~k!!,~ j ~1!,...,j ~k!!5Pi ~1!, j ~1!¯Pi ~k!, j ~k!.

Here the indicesi (m) are N-tuples (i 1
(m) ,...,i N

(m)) ~for a sys-
tem with N particles!. The subscript ofi n

(m) corresponds to
the nth particle, whereas the superscript corresponds to
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mth copy of the whole system. Left-multiplication b
Tn,k

(N)(p1 ,...,p2) permutes the rows ofP^ k yielding the ma-
trix M with entries

M ~ i ~1!,...,i ~k!!,~ j ~1!,...,j ~k!!5Pi „p~1!…, j ~1!¯Pi „p~k!…, j ~k!.

The operation ofp5(p1 ,...,pN) on the indices is given by
i „p(m)…5( i 1

„p1(m)… ,...,i N
„pN(m)…). Sincepn(1)52 we have

M ~ i ~1!,...,i ~k!!,~ j ~1!,...,j ~k!!5Pi ~2!, j ~1!•Pi „p~2!…, j ~2!¯Pi „p~k!…, j ~k!.

Now taking the trace results in

(
j ~1!,...,j ~k!

M ~ j ~1!,...,j ~k!!,~ j ~1!,...,j ~k!!

5 (
j ~1!,...,j ~k!

Pj ~2!, j ~1!•Pj „p~2!…, j ~2!•...•Pj „p~k!…, j ~k!. ~8!

Considering the summation overj (2) separately and using
P25P, we get

(
j ~2!

Pj „p~2!…, j ~2!Pj ~2!, j ~1!5Pj „p~2!…, j ~1!. ~9!

Combining Eqs.~8! and ~9! yields

(
j ~1!,...,j ~k!

M ~ j ~1!,...,i ~k!!,~ j ~1!,...,j ~k!!

5 (
j ~1!, j ~3!,...,j ~k!

Pj „p~2!…, j ~1!•Pj „p~3!…, j ~3!¯Pj „p~k!…, j ~k!.

Now the result follows immediately if we identify the poin
1 and 2.

VI. THE INVARIANT RING OF A TWO QUANTUM-BIT
SYSTEM

To illustrate the results, we consider the smallest n
trivial example, a system of two quantum bits. Using o
algorithm, we are able to compute homogeneous invaria
for each degree. As stated before, the homogeneous in
ants of a fixed degree form a vector space. Therefore
sufficient to compute a basis for that vector space, e.g
maximal linearly independent set of homogeneous inv
ants. In order to know how many invariants we need,
address the problem of determining the dimensiondk of the
vector space of invariants of degreek. Information about
these dimensions is encoded in a formal power series,
Molien series~cf. @15#!

P~z!ª(
k>0

dkz
kPZ@@z##.

In case of a finitely generated algebra the Molien series tu
out to be a rational function~see, e.g.,@16#!. Thus it can be
expressed in a closed form with a finite number of terms
principle, the Molien series for the linear action~1! of a
compact groupG on polynomials can be computed by mea
of the following averaging formula:
-
r
ts
ri-
is
a

i-
e

he

s

n

P~z!5E
gPG

dmG~g!

det~ id2zg!
, ~10!

wheremG is the normalized Haar measure ofG.
In this paper, however, we are concerned with the act

of G5SU(2)3SU(2) on matrices by conjugation~2!, for
which the formula~10! does not apply directly. Since th
operation onr given by

r°~U1^ U2!•r•~U1^ U2!† for U1 ,U2PSU~2!

is linear, we writer as a vectorrW of lengthn2 and obtain the
representation

rW °~U1^ U2^ U1^ U2!rW ,

whereUi denotes the complex conjugate of the matrixUi .
The integral~10! is simplified by means of the integra

formula of Weyl ~cf. @17#, Sec. 26.2!, which allows one to
perform an integration over the whole group in two ste
The first step involves an integration over a maximal torusT
of the groupG and the second an integration on the resid
classesG/T. Next, the integral is transformed into a comple
path integral that can be solved by the theorem of residu
Finally, we end up with the Molien series

TABLE II. The invariants f p1 ,p2
(r i j ) corresponding to these

permutations~listed together with the degree and the number
terms of the invariants! generate the polynomial invariants of
two-quantum-bit system~at least! up to degree 23.

degree p1 p2 number of terms

1 id id 4
2 id ~12! 10
2 ~12! id 10
2 ~12! ~12! 10
3 ~123! ~12! 52
3 ~123! ~123! 24
4 ~1234! ~13! 110
4 ~1234! ~123! 144
4 ~1234! ~1234! 70
4 ~1234! ~12!~34! 98
5 ~123!~45! ~12345! 456
6 ~123456! ~1235! 1 334
6 ~123!~45! ~12456! 1 586
6 ~123!~45! ~123456! 1 542
6 ~123!~45! ~1234!~56! 1 464
7 ~1234!~567! ~124567! 4 156
7 ~1234!~567! ~1267!~35! 4 576
8 ~12345!~678! ~1235678! 10 414
8 ~12345!~678! ~12378!~46! 11 340
9 ~12345!~678! ~1236789!~45! 24 780
9 ~12345!~6789! ~1235678! 24 168
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P~z!5
z102z82z712z612z512z42z32z211

~z21!10~z11!6~z211!2~z21z11!3

511z14z216z3116z4123z5152z6177z71150z8

1224z91396z101583z111964z1211395z13

12180z1413100z1514639z1616466z1719344z18

112 785z19117 936z20124 121z21133 008z22

143 674z231O~z24!.

The information about the dimensions of the vec
spaces can now be used to compute all invariants degre
degree. Having computed an algebra basis for all invaria
of degree less thank, homogeneous invariants of degreek
are obtained by multiplying invariants of smaller degre
that sum up tok. By computing the vector space dimensio
of these invariants and comparing it to the dimension giv
by the Molien series, we know how many linearly indepe
dent invariants are missing. Next, these missing invaria
are constructed from pairs of permutationspnPSk . It is suf-
ficient to draw randomly from the pairs of permutation r
maining after theorem 9 and theorem 10 until the vec
space dimension given by the Molien series.

Using the computer algebra systemMAGMA @18# we
found 21 invariants corresponding to the permutations sho
in Table II. Furthermore, we were able to show that the
invariants generate all invariants up to degree 23. We c
jecture that any polynomial invariant of a two-quantum-
system can be expressed in terms of these 21 invarian
should be noted that there are 43 674 linearly independ
invariants of degree 23 and that the invariants of degre
have more than 24 000 terms.

The Molien series provides also information about t
maximal number of algebraically independent invarian
This number is given by the order of the polez51 of the
Molien series@15#. For the two-quantum-bit system, the
are 10 algebraically independent invariants. Thus any 11
r
by
ts

s

n
-
ts

r

n
e
n-
t
. It
nt
9

.

n-

variants fulfill a polynomial equation, i.e., given numeric
values for 10 algebraically independent invariants, the val
of the remaining invariants are some roots of polynomia
But these values are not unique since none of the 21 inv
ants is a polynomial function of the others.

VII. EXAMPLES

A. Characteristic polynomials

As stated in the Introduction, the coefficients of the ch
acteristic polynomialxr(X) of a density operatorr and of
the reduced density operators are invariant under local
tary transformation. They can be expressed in terms of
invariantsf p1 ,p2

presented in Table II as follows:

xr~X!5X42 f id,idX31S 1

2
f id,id

2 2
1

2
f ~1 2!,~1 2!DX2

1S 2
1

6
f id,id

3 1
1

2
f id,id f ~1 2!,~1 2!2

1

3
f ~1 2 3!,~1 2 3!DX

1
1

24
f id,id

4 2
1

4
f id,id

2 f ~1 2!,~1 2!1
1

3
f id,id f ~1 2 3!,~1 2 3!

1
1

8
f ~1 2!,~1 2!

2 2
1

4
f ~1 2 3 4!,~1 2 3 4! .

Here, the coefficient ofX3 in xr is a linear invariant poly-
nomial that equals the negative trace ofr, and the constan
coefficient ofxr is an invariant of degree 4 that equals t
determinant ofr.

For the characteristic polynomials of the reduced den
operatorsr (1)

ªtr2(r) andr (2)
ªtr1(r) we obtain

xr~1!~X!5X22 f id,idX1
1

2
~ f id,id

2 2 f ~1 2!,id!

and

xr~2!~X!5X22 f id,idX1
1

2
~ f id,id

2 2 f id,~1 2!!.

B. Test for local equivalence

Consider the following density operators:
r15
1

800 S 214 2162150 i 21018 i 3

2161150 i 226 13 1028 i

21028 i 13 234 161150 i

3 1018 i 162150 i 126

D
and

r25
1

800 S 214 2161150 i 1018 i 23

2162150 i 226 213 21028 i

1028 i 213 234 162150 i

23 21018 i 161150 i 126

D .
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These density operators are~globally! conjugated to each
other, i.e.,r25Ur1U†, whereUPU(4). Thus they have the
same eigenvalues. Furthermore, the reduced density op
tors are the same. Partial transposition ofr1 and r2 yields
positive operatorsr1

Ti and r2
Ti ( i 51,2), thusr1 and r2 are

both separable@19#. Again, the eigenvalues and the reduc
density operators corresponding tor1

Ti andr2
Ti are the same

Also, all polynomial invariants up to degree 5 evaluate to
same number forr1 andr2 . Hence one might expect thatr1
andr2 are locally equivalent.

But we have the following: The values of the invariants
degree 6 corresponding top15(1 2 3)(4 5), p2
5(1 2 4 5 6) andp15(1 2 3)(4 5),p25(1 2 3 4 5 6)differ
showing thatr1 andr2 are not locally equivalent. Note tha
after precomputation of the invariants this can be deci
just by evaluating the invariants.

VIII. CONCLUSION

We have established a connection between local poly
mial invariants of quantum systems and permutations.
local invariants of anN-particle system can be compute
directly from N-tuples of permutations. Theorems 9 and
allow a reduction of the number of permutations to be c
d

-

,

n

ra-

e

f

d

o-
e

-

sidered. This makes the computation of invariants feasib
In the particular case of pure states and subspaces, t

rem 11 allows a further reduction of complexity. All thes
theorems apply for subsystems of any dimension.

In the special case of quantum-bit systems, we are abl
construct a vector space basis for the matrices directly
terms of permutations derived from binary trees. It has to
investigated if there are similar constructions for subsyste
of dimensionn.2.

Since our methods are not restricted to density operat
they can also be used to study nonlocal properties of uni
transformations. For example, it can be tested whether
quantum circuits are equivalent with respect to conjugat
by single quantum-bit gates.
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