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Computing local invariants of quantum-bit systems
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We investigate means to describe the nonlocal properties of quantum systems and to test if two quantum
systems are locally equivalent. For this we consider quantum systems that consist of several subsystems,
especially multiple quantum bits, i.e., systems consisting of subsystems of dimension 2. We compute invariant
polynomials, i.e., polynomial functions of the entries of the density operator that are invariant under local
unitary operations. As an example, we consider a system of two quantum bits. We compute the Molien series
for the corresponding representation, which gives information about the number of linearly independent in-
variants. Furthermore, we present a set of polynomials that generate all invéagleas) up to degree 23.

Finally, the use of invariants to check whether two density operators are locally equivalent is demonstrated.
[S1050-294{@8)10609-1

PACS numbds): 03.67—a, 02.20.Hj

I. INTRODUCTION II. POLYNOMIAL INVARIANTS

A. Operation on polynomials
Nonlocalit_y is one of the astonishing phenomena in quan- The groupGL(n,F) of invertible nx n matrices over the
tum mechanics. Well-known examples are EPR fditeind  field F operates on the polynomialsp(xy,...X)
the GHZ statg2]. States of quantum codes contradict local ¢ [, ,... x,] in the following manner:
realism, tog[3]. One common feature of these states is that

the nonlocal properties do not change under local transfor- PI(Xy,... Xn) =P (Xq, ... Xp),
mations, i.e., unitary operations acting independently on each
of the subsystems. Thus, any function invariant under local where (Xq,...Xn) =(Xq,... Xp)%, (1)

unitary transformation$LUT) can be used to describe these

nonlocal propertief4,5]. Here we study polynomials that are i.e., each variable is replaced by the linear combination ob-

invariant under local unitary transformations. Among thesetained by multiplying the vector of variables by the group

there are, e.g., the coefficients of the characteristic polynoelementge GL(n,I).

mial of a density operator or of the reduced density opera- On nXxXn matrices the grougsL(n,I) acts by conjuga-

tors. The paper extends the work of Raf6$, in which he  tion. Hence polynomial§(pi;) =f(p11,...,0nn) in the entries

showed how, in principle, all polynomial invariants can bep;j; of annXxn density operatop are then acted upon by

computed. We present further reductions of complexity thagconjugation, i.e.,

make the computation of polynomial invariants feasible at _ _

least for small systems. f9(pij)=1(pi;), where p=p9=gLl.p-g. 2
The paper is organized as follows. In Sec. Il we consider

the linear action and the action by conjugation of matrix Given a subgroupG<=GL(n,F), we are interested in

groups on polynomials. Then we establish a connection bgolynomials that are fixed by all elements Gf under the

tween invariant polynomials and the algebra of matricesction defined by either Eq€l) or (2). These invariant poly-

commuting with all elements of the group. A physical inter- nomlals(Just _calledmvangnts_) form an algebra over t_he flgld

pretation of the invariant polynomials is given by relating I" since any linear combination and any product of invariants

them to some observables. Mainly classical results for thes Invanant under the action of thg group, too. It is sufficient
to study homogeneous polynomials as each homogeneous

algebras are recalled in Sec. Ill. In Sec. IV a method to nomial of deare&k remains homoaeneous of the same
construct a vector space basis of these algebras is presen%%’y 9 9

. ) egree under the operation Gf and every polynomial can
for the case of two-dimensional subsystems. Furthermor% L S
. ; e decomposed additively into its homogeneous components.
we present results that imply a further reduction of the com- For the class of so-calledeductive groups (e.g., finite
plexity to compute all invariants. The special situation of - o

. i y oups, unitary groupsthe invariant ring is finitely gener-
pure states and subspaces is considered in Sec. V. In Sec. ﬂed(cf. [7]), i.e., every invariant can be expressed in terms

we compute the Molien series and a set of invariants for & some algebra generators. These so-cdliedamental in-

two-quantum-bit system. We conclude in Sec. VIl with ex-ysariantscan be chosen to be homogeneous polynomials of a

amples for the application of these invariants. small degree. Under this assertion the task is to find a system
of fundamental invariants such that any other invariant can
be expressed as a polynomial of these. In what follows we

*Electronic address: grassl@ira.uka.de focus on this task for invariants under the action of tensor
"Electronic address: roettele@ira.uka.de products of unitary groups on density operators by conjuga-
*Electronic address: EIS®ffice@ira.uka.de tion given by Eq.(2).

1050-2947/98/58)/18337)/$15.00 PRA 58 1833 © 1998 The American Physical Society



1834 MARKUS GRASSL, MARTIN ROTTELER, AND THOMAS BETH PRA 58

B. Invariant matrices M,;:=F+F" and M,:=iF—iF".
Instead of studying the invariant polynomials directly, we
use the relation between homogeneous polynomials in th
entries of a density operatprand constant matrices.
Lemma 1For every homogeneous polynomfabf degree
k in the entri f th nsit raiothere exists a matrix
<in the tehat es of the density operajothere exists a ma (M):=tr(M1-p®9)  and (My):=tr(M,- p®¥)

@oth M, and M, commute withg®¥ for all g=U;®- -
®Uye U(n)®N sinceF (and thusF') commutes withg®*
(cf. theorem 2. Hence, thdreal) mean values

N N ok are also invariant under local unitary transformation. In prin-
Flpij) = Te(pij) =tr(F-p™5). ®) ciple they can be obtained by joint measurements ofpies

Proof. This follows directly from the fact that the matrix of the quanium system with density operator

p®¥ contains all monomials in the variablpg of degreek.
Next, we characterize invariant polynomials in terms of

the corresponding matrices. _ _ In order to compute all homogeneous invariants of degree
Theorem 2A homogeneous polynomidl of degreek in | it is sufficient to know the algebra of matrices that com-

the entries of the density operatpris invariant under the ., te withg®¥ for all ge G. Such algebras have been stud-

operation of a compact grop=<GL(n,F) by conjugationif  jeq e g., by Brauer for many classes of groggis[9]). For

and only iff=fg for a matrixF that is invariant under con-  {he ynitary group and tensor products of unitary groups, we

jugation by @~*)“* &equwalently, if and only if the matrix paye the following theorems and corollaries.

F commutes withg®") for all ge G. o Theorem 3 (Brauer)The matrix algebra4,, , of matrices
Proof. Conjugation ofp by g corresponds to conjugation tnat commute with any matrild ®¥ for U e Ukn) is gener-

of F by (g~*)®* as shown by the following calculation:  ated by the representation, : Sc— GL(n%,C) of the sym-

metric groupS, that operates on the tensor product space

Ill. INVARIANT ALGEBRAS

-1 ) = -1 ®k (CM®k=V,®---®V, by permuting thek spacesV; of di-
= tr(F . .- ) 1 k Oy i
fr ((g p g)”) (9= r-9) mensionn.
_ This result extends to tensor products of unitary groups.
_ ek ®k  ®k
=tr (F (97)% 0™ g ) Corollary 4. The algebra of matrices that commute with
i . any matrixUP*®---@UgK for U;e U(n;) is given by the
=tr(¢® - F -(g7")®" - p®*) tensor product of the algebra, .

To obtain the “natural” ordering of the tensor factors, we

have to conjugate the matrices by a permutation matrix.
= fr(Pis)- Corollary 5. The algebraA{} of matrices that commute
_ with any matrix U;®---®@Uy)®* for U;eU(n) is conju-

If F commutes withg®¥, then the equality of andF im-  gated to theN-fold tensor product of the algebra, y, i.e.,
plies fr (9™ *pQ)i))=fr(pi))- | .

If on the other hand is invariant under the operation of AN =0(A 0 Ne ™t =Ty (7). 6)
G, for any matrixF with f=f-, we havef,:((g‘lpg)ij)
=fr(pij). Since the grougs is compact, we can average
over the groupcf. [8]) and obtain the matrix

F

Here 7 is the permutation that exchanges the macrocoordi-
nates and microcoordinates according to the isomorphism
between the tensor product spaces,

F:f %% F- (g7 H)*)dug(g). (4) (VMK and (VEK)EN (where V=C").
geG

. As a permutation od1,... k-N}, 7 mapsak+b+1 to bN
By construction, F is invariant under conjugation by +a+1 (fora=0,...N—1,b=0,...k—1).
(g~ ®* and furthermore = f¢. (The reader familiar with the theory of fast Fourier trans-
Using this theorem and lemma 1, we are in principle ableformations will recognize the similarity to the “bit reversal
to compute invariants of the group starting from any ma- permutation”[10].)
trix F and computing a matri that commutes witly X for For the special situation of quantum-bit systems, i.e., the
all ge G. But in practice, the integratiof#) is very difficult ~ 9roup U(2), thedimension of the algebra is given by the

to perform. In Sec. Ill we will present a method to calculateollowing theorem. _ _
the matricesE directly without integration. Theorem 6.The vector space dimension of the algebra

Ay is given by the Catalan numbgt1]

C. Physical interpretation of the polynomial invariants 1 {2k
Although we do not have full insight into the physical Clk)= m( k )

interpretation of the polynomial invariants yet, we will relate

them to some observables. Proof. This result is derived if12] from a theorem of
Recall from Eq.(3) that all polynomial invariants of de- Weyl [8].

greek can be written asfF(pij)=tr(F-p®k). From F we Note that the algebral,, was defined by th&! matrices

construct two Hermitian operators T,k(m) for me S¢. As an algebraA, is generated by the
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FIG. 1. The five distinct ordered binary trees with three nodes.
FIG. 2. General form of a tree in the clasg;. The subtrees

image of the generators &, i.e., by only two matrices. Bu, Bir, By, andB,, might be empty. Furthermore, fgr=0 (or
Theorem 6 states that, even as a vector space, fewekthan ] =k—1) the left subtrees, (or the right subtred, ) is empty.

matrices are sufficient. o _
Let B, denote the set of all distinct ordered binary trees

with k nodes labeled in the manner described before, and
P=m(By) be the set of permutations obtained by the map-
A. One quantum bit ping 7. Using this notation, we can formulate the following

The mapping(3) from invariant matrices to invariant ho- theorem. _
mogeneous polynomials is a vector space homomorphism. 1heorem 7. The set of matrices M :=To(P)
Thus, in order to compute all linearly independent homoge={ T2x(7(B)):B € By} forms a vector space basis of the al-
neous invariants of degrdefor tensor products of the group 9€PraAzy. _ _

U(2), it is sufficient to consider a vector space basis of the Proof. Fork=0 andk=1 the statement is obviously true.
algebraA,, . Such a basis can be constructed starting from O k>1, we partition the seB, of binary trees withk
binary trees wittk nodes, mapping them to permutations of N0des intx classesS ; (j=0,... k—1). The class,; con-

k letters, and finally obtaining matrices via the representatior§iSts Of all trees witlj nodes in the left subtree of the root.
T2k The construction resembles some of the many beautiful & general form of a tree in the claBg; is shown in Fig.
combinatorial properties of Catalan numbéet [11,13). : ) ) ) ) ]

Let B, denote a labeled ordered binary tree withodes, Forj<k—1 in each of the tree§ e By, | +2 is a right
i.e., each node in the tree but the root has a father, and ea8Qn of 1, and thusr(B) maps 1 toj +2. Forj=k—1, the
node in the tree has at most one left and at most one rigfPot 1 has no right son and thug(B) fixes 1. To combine
son. The labeling of thie nodes of the tree with the numbers these two cases, we identiky+ 1 an%_{.lHenc%ﬁﬁ(w(B)_)
{1,...k} is obtained by traversing the nodes in the order rootMaps|e:) to |g . ,), where|e)=[0)*'"*1)[0)**"". This
left subtree, right subtree. Figure 1 shows all distinct binaryShows that foiB € By |
trees with three nodes labeled in that manner.

A maximal right pathin the binary treeB, is a sequence tr(en (e 2| Tox(m(B)) =5 ;v
of nodes (,ry,...,r;) such that each of the nodes, ; is
the right son of the node;, r, is not the right son of any
node, and; has no right son.

Given the setR(B,) of all maximal right paths of a bi-
nary treeB, we define a permutation(B,) € S, by the prod-
uct of cycles

IV. BINARY TREES, PERMUTATIONS, AND ALGEBRAS

Therefore, forj#j’ the matrices in the sets, (7 (By))
and T, (m(By j-)) are mutually linearly independent.

For fixed j, each permutationr(B) for a treeBe By |
with left and right subtree®, and B, (see Fig. 2 can be
written in the form

m(B)=(1j+2)-7(B))- m(B,),
By) = rofq-=°ri). 6
By <r0,r1,...1,:j[|)e7z(sk) (Tor J') ©) where the permutations,;= w(B,) and =,= w(B,) operate
on the setq2,...,j+1} and{j+2,... k}, respectively. The
For example, for the trees of Fig. 1 we get the five permutacorresponding representations are “shifted” tensor products,
tions (1)(2)(3), (1)(2 3), (13)(2), (1 2)(3), and(1 2 3. ie.,

Tox(m(B))
=Tor((1j+2))- (pi+1®@ T j—1(m))- (1@ T (7] ) @ lok-i-1) =Ty (1) +2)) - U1 ®@ T (7] ) @ Top—j—1(71()),

where | € S; and 7/ € S,_;_; are obtained by relabeling. B. Multiple quantum bits

By the induction hypothesis, the matrices corresponding to

the subtree®, andB, are linearly independent for different  In order to compute a basis of the algeb#gl)) for an
trees. Thus we have shown that the matricesp are lin-  N-particle system, we define the following representation
early independent. It remains to show that they form a basid o : (S)N—GL(n*™,C) of the N-fold direct product of the

of A,y. But this follows from theorem 6 together with the symmetric grougSy :

fact that there are exactly(k) different ordered binary trees

with k nodes(cf. [14], p. 389. (71 m)= 0 (To(T) @@ Ty ()0t
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TABLE 1. Number of pairs ¢ry,m,) € (S)? to be considered Proof. If H is not transitive, it defines a nontrivial parti-
for the construction of invariants using the different theorems.  tion of the set{1,... k} into orbits. By simultaneous conju-
gation using theorem 9, we can assume that the partition

Th.9  f1.. .k} and{k;+1,...k} respects the orbits. Thus, for
Th.9 Th.10  —3 N each permutationr, can be written as a product

2 2
K (k1) Ck) Th.9  Th.10 Th.10 Th. 11 m, =, m, With 7, e Sk, operating on{1,...k;} and =
1 1 1 1 1 1 1 € S, operating onfk; +1,... k} (k;+k,=K). Furthermore,
2 4 4 4 3 3 2
3 36 25 10 15 6 3 _ (N) ®k
f ) =tr(T5 (1, ,TN) -
4 576 196 36 97 20 10 Tyrnes wN(p”) ( 2,k( 1 N) P )
5 14 400 1764 114 733 60 22 =tr((TH (1, 73)
6 518 400 17 424 496 6 147 291 100
7 25401600 184041 2142 55541 1310 361 TN (wt ...l p=%)
8 1625702400 2044900 10758 530773 6975 1717 e
= tr(T(ZI’\,'()l( ) poi)
[where the matrixs is given by Eq.(5)]. Xtr(TN) (7. 7l) - p©k2)
: o . 2k \T1s-sTN) P
In the special case & quantum bitgi.e., n=2) combin-
ing theorem 7 and corollary 5 we obtain the following. =f. o (pi)-far o (pij).
100 N 10 N

Corollary 8. The set of matrice§SY(P}) is a vector

. N)
space basis of the algebwzk : For the case of two quantum bits, Table | shows the re-

) = X QYuction of the number of pairs of permutations to be consid-
A3k as follows: (i) Generate the sef of all different  greq using the construction of permutations from binary
binary trees(ii) generate the set of permutatigRgobtained  trees, theorem 9, theorem 10, both theorems 9 and 10, and
by construction(6); and (iii) for eachN-tuple of permuta- finally the combination of theorems 9, 10, 11.
tions (mq,...,my) apply the representatioﬁ(z'}), i.e., com-
pute the tensor product of the representatiopg7,).
Instead of computing a matrix for each of tHe N tuples
of permutations in§)", it is sufficient to consider only the  The technique to compute polynomials invariant under
C(k) permutations, implying a complexity reduction from the action of tensor products of unitary groups does not only
O(K*M) to O(4kM). apply to density operators of mixed states, but also to sub-
Using Eq.(3), we get a set of polynomials invariant under spaces and pure states. To study nonlocal properties of sub-
local transformations spanning the vector space of homogespaces with basisy;) (e.g., quantum error-correcting codles

V. PURE STATES AND SUBSPACES

neous polynomial invariants of degrie \ _ one can use the invariants of the corresponding projection
For anyN-tuple 7= (7y,...,my) € (S~ of permutations  operatorP=3;|y;){¢;|. Pure statefp) can be considered as
we obtain a homogeneous invariant of degkegiven by a one-dimensional subspace with projection operdor
=|¢){¢|, or equivalently as a mixed state with density op-
fwl ..... wN(Pi,j)‘:tr(T(zl,\Ll()(Wl,---ﬂTN)‘P®k)- (7 eratorp=|¢){¢|.

In that situation, we have the additional relatid??

Clearly, there exist relations between the invariant poly-=P (p?=p) which can be used for a further reduction of the
nomials obtained from the tuple of permutationsnumber of permutations to be considered. The following
(m1,...,mn) € (SN (also with varyingk). Some of these theorem is quoted frorf6], adding an explicit proof.
relations can be expressed in terms of the permutations. This Theorem 11.Let P be a projection operator. If for
allows a further reduction of the number of tuples of permu-(7,...,mm\) € (S)" there exist different numbersand m
tations that have to be considered to compute all invariantssuch that for each permutatian, we haver,(1)=m, then

Theorem 9If (my,...,my) and (77,...,m) are “simul-  the invariantf . WN(pij):fwi _____ w,/\‘(Pij) where the per-

tan(E?ust” conjugated, i.e., there existe S such thatm,  mytationss’ e S,_, are obtained by identifying the points
=7 w7 for al ve{l..N}, then f. . (pij)  andm followed by a relabeling.

' (pij) - Proof. By theorem 9, we can assume without loss of gen-
Proof. Simultaneous conjugation of the permutatians ~ €rality thatl=1 andm=2, i.e., 7,(1)=2 for all permuta-

by 7 corresponds to permuting the tensor factorp® by -, ~ tions7,. We will show that in the summatiofY) there are
keepingp® fixed as a whole. Thué (pij) does not entries ofP? that can be replaced by thoseR®f The entries
Tis-TN

change. of P®¥ are of the form

Next we give a condition on the permutations when an
invariant can be written as a product of invariants. (P=X) .00y .00y = Py jr - +Pido .

Theorem 10.If the subgroup H=S, generated by
my,...,my IS NOt transitive, then the homogeneous invariantHere the indices*) are N-tuples ¢§,....i{*)) (for a sys-
fr...m(pij) Of degreek is a product of invariants of tem with N particles. The subscript of{*) corresponds to
smaller degree. the vth particle, whereas the superscript corresponds to the
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uth copy of the whole system. Left-multiplication by dug(9)
T 7ry,...,m,) permutes the rows dP®¥ yielding the ma- P(z)= e (10
trix M with entries 9e 9

M, ' . = P (1) (1) P (k) 5 (K. ) ]

(0,0, GO, ) = Fi e, jr o 0 where ug is the normalized Haar measure ®f

i) = (M) )y gincesr (1)= of G=SU(2)XSU(2) on matrices by conjugatio®), for

=(iy NN . 7,(1)=2 we have ) . .

which the formula(10) does not apply directly. Since the
M@ i) = Pi@ ;- Pi@@) j@" *Pi@w) jk. operation ory given by

p—(U1®Uy) p-(U@Uy)" for U;,U,eSU2)

P is linear, we writep as a vectoﬁ of lengthn? and obtain the
representation

= > P2, Pi@@ @ ... Pjmm . 8
i j(k)
Considering the summation ovgf?) separately and using p—>(U1®U0U;0Us)p,
P2=P, we get
WhereU_i denotes the complex conjugate of the matdix
% Pi@2) j@Pj@ j=Pj@@) j. C) The integral(10) is simplified by means of the integral
) formula of Weyl (cf. [17], Sec. 26.2 which allows one to
Combining Eqs(8) and (9) yields perform an integration over the whole group in two steps.

The first step involves an integration over a maximal tofus
of the groupG and the second an integration on the residue
Z M, iy, G, i) classess/T. Next, the integral is transformed into a complex
L path integral that can be solved by the theorem of residues.
Finally, we end up with the Molien series

it

= Pi@@ j- Pj@@) j3 - Pj@w joo.

_J'(l)’j(3) _____ j(k) ) ) )
TABLE Il. The |nvar|antsf,,1'7,2(pij) corresponding to these
Now the result follows immediately if we identify the points permutations(listed together with the degree and the number of
1 and 2. terms of the invarianjsgenerate the polynomial invariants of a

two-quantum-bit systerfat least up to degree 23.

VI. THE INVARIANT RING OF A TWO QUANTUM-BIT

SYSTEM degree T ™5 number of terms

To illustrate the results, we consider the smallest non- !d Id 4
trivial example, a system of two quantum bits. Using our id (.12) 10
algorithm, we are able to compute homogeneous invariants 2 (12) id 10
for each degree. As stated before, the homogeneous invari- 2 (12 (12 10
ants of a fixed degree form a vector space. Therefore it is 3 (123 (12 52
sufficient to compute a basis for that vector space, e.g., a 3 (123 (123 24
maximal linearly independent set of homogeneous invari- 4 (1234 (13 110
ants. In order to know how many invariants we need, we 4 (1234 123 144
address the problem of determining the dimensigrof the 4 (1239 (1234 70
vector space of invariants of degrée Information about 4 (1234 (12)(34) 98
these dimensions is encoded in a formal power series, the 5 (123(45) (12345 456

Molien series(cf. [15]) 6 (123456 (1239 1334

6 (123/(45) (12456 1586

_ K 6 (123/(45 (123456 1542

P(2):= Eo diz"e Z[[z]]. 6 (123)(45) (1234/(56) 1464

7 (1234(567) (124567 4156

In case of a finitely generated algebra the Molien series turns 7 (1234(567) (1267 (35 4576

out to be a rational functiofsee, e.g.[16]). Thus it can be 8 (12345(679) (1235678 10 414

expressed in a closed form with a finite number of terms. In 8 (12345(679 (12378(46) 11 340

principle, the Molien series for the linear actidf) of a 9 (12345(679 (1236789(45) 24780

compact groufis on polynomials can be computed by means g (12345(6789 (1235678 24 168

of the following averaging formula:
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20— 7287742784254+ 24 28— 72+1

T -z )Y 2 DA Rz 1)°

P(z)

=1+2z+47%+62°+162*+232°+522%+ 772" + 1508
+2247°+ 396710+ 583711+ 964712+ 139513
+ 218+ 3105+ 463% 10+ 646621+ 934418
+12 785+ 17 93620+ 24 1217%'+ 33 00&*?

+43 67423+ 0(z%%).

The information about the dimensions of the vector

spaces can now be used to compute all invariants degree by
degree. Having computed an algebra basis for all invariants

of degree less thak, homogeneous invariants of degree

are obtained by multiplying invariants of smaller degrees

that sum up tk. By computing the vector space dimension

of these invariants and comparing it to the dimension given

by the Molien series, we know how many linearly indepen-

dent invariants are missing. Next, these missing invariants

are constructed from pairs of permutationge S,. It is suf-
ficient to draw randomly from the pairs of permutation re-
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variants fulfill a polynomial equation, i.e., given numerical
values for 10 algebraically independent invariants, the values
of the remaining invariants are some roots of polynomials.
But these values are not unique since none of the 21 invari-
ants is a polynomial function of the others.

VIl. EXAMPLES
A. Characteristic polynomials

As stated in the Introduction, the coefficients of the char-
acteristic polynomialy,(X) of a density operatop and of
the reduced density operators are invariant under local uni-
tary transformation. They can be expressed in terms of the
invariantsfwl,1T2 presented in Table Il as follows:

1
Xo(X) =X = figiaX°+ | 5t a— 5faa.a 2)))(2

1 N 1
+| — gt sTiaiafaa.aa~ 3129029 )X
1 4 1 5
+5afiaia zTiwidfa2.a2 7 3lididfa29.029
1, 1
+§f<12),(12)_Zf(1234;,(123¢-

Here, the coefficient oK3 in X, is a linear invariant poly-

maining after theorem 9 and theorem 10 until the vectomomial that equals the negative tracegpfand the constant

space dimension given by the Molien series.
Using the computer algebra systemmcmA [18] we

coefficient of x, is an invariant of degree 4 that equals the
determinant ofp.

found 21 invariants corresponding to the permutations shown For the characteristic polynomials of the reduced density
in Table Il. Furthermore, we were able to show that theseyperatorsp™:=tr,(p) and p®:=tr,(p) we obtain

invariants generate all invariants up to degree 23. We con-
jecture that any polynomial invariant of a two-quantum-bit
system can be expressed in terms of these 21 invariants. It
should be noted that there are 43 674 linearly independent
invariants of degree 23 and that the invariants of degree gnd
have more than 24 000 terms.

The Molien series provides also information about the
maximal number of algebraically independent invariants.
This number is given by the order of the pade 1 of the
Molien series[15]. For the two-quantum-bit system, there
are 10 algebraically independent invariants. Thus any 11 in- Consider the following density operators:

1
Xp0(X)= X2 fig jgX+ E(fizd,id_ f12,ia)

1
Xp2(X)=X2—fiq igX+ E(fizd,id —fia,12)-

B. Test for local equivalence

214 —16—150i —10+8i 3
1 | —16+150i 226 13 10-8i
P17800| —10-8i 13 234 16+ 150i
3 10+8i  16—150i 126
and
214 —16+150i 10+8i -3
1 | —16-150i 226 -13  —10-8i
P27800| 10-8i -13 234  16-150i
-3 —~10+8i  16+150i 126
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These density operators afglobally) conjugated to each sidered. This makes the computation of invariants feasible.
other, i.e.p,=Up,UT, whereU e U(4). Thus they have the In the particular case of pure states and subspaces, theo-
same eigenvalues. Furthermore, the reduced density opensem 11 allows a further reduction of complexity. All these
tors are the same. Partial transpositionpgfand p, yields  theorems apply for subsystems of any dimension.

positive operator$)1—i and p;i (i=1,2), thusp, andp, are In the special case of quantgm—bit systems_, we are able_to
both separablg19]. Again, the eigenvalues and the reducedConstruct a vector space basis for the matrices directly in

density operators correspondingﬂ{i and p;i are the same. [€rms of permutations derived from binary trees. It has to be

L . investigated if there are similar constructions for subsystems
Also, all polynomial invariants up to degree 5 evaluate to the g Y

me number f nd Hen ne miaht expect th of dimensionn>2.
sane nuMBer Ty andpa. Hence one might expect that Since our methods are not restricted to density operators,
andp, are locally equivalent.

o . . they can also be used to study nonlocal properties of unitary
But we have the foIIow[ng. The values of the invariants Oftransformations. For example, it can be tested whether two
degree 6 corresponding tom;=(123)(45), my

(12456) andr,~ (12 3)(45) (12345 6)differ quantum circuits are equivalent with respect to conjugation
= = o=

. \ by single quantum-bit gates.
showing thatp; andp, are not locally equivalent. Note that y singie q g
after precomputation of the invariants this can be decided
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