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Abstract. In this survey we describe relations between classical and
quantum error—correcting codes. After a brief introduction to both quan-
tum computation and classical linear error—correcting codes, we show
how to construct quantum error—correcting codes based on classical ones.
Furthermore, quantum circuits for encoding and syndrome computation
are presented.
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1 Introduction

The foundations for the field of quantum computation were laid by RICHARD
FEYNMAN and PAUL BENIOFF in the early 80s by studying the relationship
of physical and computational processes. From the observation that quantum
mechanical processes are hard to be simulated on classical computers, they con-
cluded that quantum mechanics might help to speed—up computations. After
some results of mainly theoretical nature, it was PETER SHOR who presented an
algorithm of practical interest for a computer based on the principles of quan-
tum mechanics (cf. [22]). His algorithm for factoring integers is exponentially
faster than any classical algorithm known so far. The algorithm renders a lot of
currently used crypto systems insecure since they rely on the fact that factoring
(very) large numbers is infeasible on a classical computer.

But quantum computation would still have been only of theoretical interest if
there had not been suggestions for the physical realization of quantum computers
(cf. [7,10,12,20]). Nevertheless, another difficulty appeared on the way to the
realization of quantum computers. The physical system of a quantum computer is
modelled as a closed system that is isolated from its environment. But compared
to classical systems, quantum mechanical systems are much more sensitive to any
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disturbance, e. g., by single photons. And it was believed that there is no way to
circumvent this problem by methods of error correction since arbitrary quantum
states cannot be replicated (see [26]). It was again SHOR who showed that even
in the quantum case error correction is possible (see [23]).

His work initiated a lot of research establishing a theory of quantum error cor-
rection. Independently, STEANE [24,25] and CALDERBANK and SHOR [6] came
up with methods to construct quantum error—correcting codes from classical lin-
ear binary codes. Then, GOTTESMAN [13] and CALDERBANK et al. [5] presented
different approaches to generalize the construction of quantum error—correcting
codes, but yielding the very same codes. The general conditions for quantum
error—correcting codes have been studied by EKERT and MACCHIAVELLO [11],
being extended by KNILL and LAFLAMME [18].

The paper is organized as follows: In section 2, we give a short introduction
to both the field of quantum computation and the theory of classical error—
correcting codes. Then we describe the basic ideas of quantum error correction.
The main results about the relations between classical and binary codes are pre-
sented in section 4. We conclude with briefly mentioning other relations between
classical and quantum codes.

2 Background

2.1 Quantum Registers

Classically, information is often represented by bits. A single bit takes either the
value 0 or 1. In physical systems, 0 and 1 are represented by two different states
of the system. These could be two different voltages, signals with two different
frequencies, but also states on the quantum mechanical level, e. g., ground state
and excited state of an electron of an atom or ion, the spin of a nucleus, or the
polarization of photons. In Dirac notation, the two states are written as

“0”£|0>:<(1)) € and “1”£|1>:<(1)) c*.

In quantum mechanics, the principle of superposition allows a system to be
simultaneously in different states. Mathematically, the state of the basic unit
of quantum information, a quantum bit (or short qubit), is represented by the
normalized linear combination

l¢) = |0+ 5|1) where o, 3 € C, |a]? + |8]? = 1.

The normalization condition stems from the fact that when extracting classical
information from the quantum system by a measurement, the values 0 and 1
occur with probability |a|? and |8]?, resp.
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Similar to classical registers, a quantum register is built by combining sev-
eral qubits. Mathematically, this corresponds to the tensor product of two—
dimensional vector spaces. Hence the state of a quantum register of length n
could be any normalized complex linear combination of the 2" mutually orthog-
onal basis states

[01) @ ... @ |bp) =: |b1...by) = |b) where b; € {0,1}.

2.2 Quantum Gates

The laws of quantum mechanics say that any transformation on quantum sys-
tems 1s linear. Furthermore, in order to preserve the normalization any operation
has to be unitary. Let us first consider operations involving only one qubit, i.e.,
one subsystem. Similar to the classical NOT gate, there is a quantum operation
exchanging the states |0) and |1) given by the matrix

01
vor=(?1).

But on a single qubit, there is not only this “classical” operation. Examples for
non—classical operations on single qubits are given by

1 /1 1 1/i—1 i-1

Besides single qubit operations, the so—called controlled NOT gate (CNOT)
plays an important role since any unitary operation on a 2" dimensional space
can be implemented using only single qubit operations and CNOT gates (see
[1]). As a classical gate, the C NOT gate corresponds to a gate with two inputs
and two outputs. One of the inputs is copied to the first output, the second
output is the XOR of the inputs. The transformation matrix of the CNOT gate
is given by:

|a) ——4—la)

b) —P—la® b)

CNOT = (2)

o O O =
OO = O
_ o O O
O = OO

On the right hand side, the notation for the CNOT gate as a quantum circuit
is given. Each of the horizontal lines (wires) corresponds to a qubit of the whole
quantum register. The dot on the upper wire indicates that the transformation
on the lower qubit (the target)—a NOT gate—is only applied when the state
of the upper qubit (the control) is |1).

In Fig. 1 a simple quantum circuit is shown. Starting from the state |000),
a Hadamard transformation H (see equation (1)) is applied to the first qubit
resulting in the state 1/4/2]000)41/4/2]100). Next, a CNOT gate with control
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o —7]
|0) b
|0) b

Fig.1. A quantum circuit to prepare a GHZ state (see [17])

1 and target 2 is applied yielding 1/v/21]0) (0@ 0)]0) + 1/v/2]1)[0 & 1)]0) =
1/4/2]000) + 1//2|110). The state obtained after the final C NOT gate with
control 2 and target 3 is 1/4/2]000) + 1/4/2|111).

In matrix notation, the transformation is given by

(L, CNOT) - (CNOT®IL) - (H® 1)
r . .. r . .. r . . .1 .
FE FE B e |

P T P

_ B T Y T R L B L |
- P FE P r . . .-1 .
R R | \/5 B e e |

T | O . r . . -1
1 1 o1 -1

where I,, denotes an n x n identity matrix, and zeros are replaced by dots.

2.3 Classical Error—Correcting Codes

In this section we recall some basic definitions and results for classical error—
correcting codes (for a more comprehensive treatment see, e.g., [19]).

A linear block code C' = [n, k], of length n is a k-dimensional subspace of the
n—dimensional vector space ' over the finite field F, with ¢ elements (for ¢ = 2,
the notation C' = [n, k] is used). Fixing a basis {g1,...,gx} of C, an information

vector ¢ = (i1,...,0) € Fj is mapped to the code word ¢ where
k
CIZijgj =G, (3)
j=1

The n x k matrix formed by the row vectors g; is called the generator matriz G
of the code.

The dual code C*+ of C is the set of vectors that are orthogonal to all vectors of
the code with respect to the inner product @ -y = Zj Ty, l.e.,

ct ={z el |VeeCix - c=0}.
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The dual code is again a linear vector space of dimension n — k, i.e., C+ =
[n,n — k], with a generator matrix H. By definition, GH® = 0 and thus

Yee C:cH® = 0. (4)

The matrix H can be used to check whether a given vector lies in the code C'
and 1s called parity check matriz of C'. But H can also be used in the process
of error correction. Assume that a code word ¢ was sent through a channel that
added an error e, 1.e., the received vector is # = ¢ + e. Now H can be used to
compute the error syndrome

s=rH'=cH"+eH"=eH" (5)

which depends only on the error e, i.e., the syndrome is constant on the coset
C'+e. The difficult task is then to deduce the most likely error from the syndrome
(which is known to be NP-hard for certain channels [2]).

Nevertheless, there are some results about the error—correcting capabilities of
linear codes. The minimum (Hamming) distance of a code C is defined by

dmin(C) := min dg(e, ) where dp (¢, c') := [{j: ¢; # ¢} }].
c,c'EC
c#e’

For linear codes, the minimum distance equals the minimum weight since
du(e,c) =du(c—c,0) = wgty(c— ).

It is easy to show that a code with minimum distance d can detect any error e
of weight wgty(e) < d— 1 and correct any error of weight wgty(e) < (d—1)/2.
When the minimum distance of a code is known it is added to the notation as

C = [n,k,dminlg-

3 Quantum Error—Correcting Codes

3.1 The Error Model

The error free transmission (or storage) of a single qubit |¢) = «|0) + 5 |1)
without any interaction with the environment in the state |e) is depicted by:

al0y+ 81) —f weem s al0)+ 8[1)
2 2

The system and the environment remain uncorrelated which is reflected by the
fact that the output state is still a tensor product. But if there is some interaction
between the system and the environment (e. g., by photon absorption/emission),
the situation changes:
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al0) + 31)

) D

}al0>leo>+ﬁll> @)

Now the output states of the system and the environment might be entangled.
This entanglement destroys interference as shown by the following calculation:

after error free transmission:
(H @ 1) (5010 + 1) 1)) = 3(10) + [1)) 1e) + 510y = 1)) )
=10 |e
after interaction: /1
(H @ 1) (%(l@ leo) + [1) |€1>)) = 5(10) + 1)) [eo) + 3(10) = [1)) |e1)
10) (leo) +lex)) + 3 [1) (Jeo) — ler))
N—_—— —

error term

1
2
1
2

Similar to the classical case, for quantum registers the assumption is made that
errors are restricted to a small number of qubits. In general, an error is modelled
by linear, not necessarily unitary transformations. It has been shown (cf. [18])
that it is nevertheless sufficient to be able to correct so—called bit—flip errors,
phase—flip errors, and their combination. A bit—flip error resembles the classical
inversion of bit, whereas the phase—flip error has no classical equivalent. Here the
relative phase between the state |0) and |1) is changed by , i.e., the coefficient
of the state |1) is multiplied by —1.

These elementary errors are modelled by the identity and the Pauli matrices

01 0 —i 10 .
O'xZI<1 0), O'yZI<Z. 0), and 0'2::<0 _1) (i = —1).

The bit—flip error and the phase—flip error correspond to o, and o, resp. An
error on a quantum register of length n is represented by the tensor product of
single qubit errors. Similar to the classical case, the weight of an error is defined
to be the number of tensor factors different from identity.

3.2 Basic Principle

As discussed in section 2.3, for classical linear block codes the correctable errors
and the error syndromes are in one—to—one correspondence. The set of all vectors
of length n is partitioned into cosets of the code C' = [n, k], i.e.,

F;:CU(C+61)U...U<C+eqn—k_1). (6)

This idea i1s adapted for quantum error—correcting codes. The code itself is a
subspace of the whole space. Errors act now by multiplication with a unitary
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matrix (cf. section 3.1). The set partitioning of equation (6) translates into an
orthogonal decomposition of the whole vector space, i.e.,

" =Co..0oC=CopO)®...® Uyp-x_,C). (7)

Instead of the computation of the syndrome, a partial (non—-demolition) mea-
surement 1s used to project onto one of this error spaces. In a final step, the
error is corrected applying the inverse transformation UZ»_1 (see Fig. 2).

. “syndrome”
easmrement
: | measurement
i i
&1

c_ 1

Fig. 2. Orthogonal decomposition of the 2"—dimensional space into the 2¥—dimensional
code space C and the error spaces & = U; C

2" -dimensional

Unfortunately, the situation is a little bit more complicated than described
above. It is not sufficient to construct an orthogonal decomposition into the
code space and the error spaces. The information to be protected is represented
by a linear combination of the basis states of the code space. Additionally, it
has to be ensured that for all errors to be corrected the angles between the basis
states of the code space are preserved.

In the following section we will show how classical linear block codes can be
used to construct quantum error—correcting codes and how quantum circuits
for encoding and syndrome computation/measurement can be derived from the
generator matrix of the classical codes.

4 Binary Codes and Quantum Codes

4.1 Construction

The partitioning of the set of binary vectors into cosets of a linear binary block
code C' = [n, k] (see equation (6)) can be directly translated into an orthogonal
decomposition of C*" (see equation (7)) as shown in the following example. The
cosets of the code €' = {000, 111} are given by:

C"674—001‘674—010‘674—100
000] oo1 | o010 | 100
il 110 | o101 | on
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The orthogonal decomposition is obtained by replacing the binary vectors by
the corresponding quantum states and the addition of the error vectors by mul-
tiplication with a tensor product of o, and ¢d:
| ¢ |@eideo)c|idee, viac|. oidoine

|000) |001) |010) [100)

[111) [110) [101) [011)

basis

This yields a two—dimensional code which is able to correct one bit—flip error
o, at any position. But the code cannot cope with arbitrary single qubit errors
since it cannot correct phase—flip errors.

Using the Hadamard transformation H, phase—flip errors can be changed into
bit—flip errors and vice versa since

Ho,H '=0, and Ho,H ' = 0,.

Furthermore, the Hadamard transformation H®” relates a linear binary code
C = [n, k] and its dual C* in the following manner: Let ¢ be the characteristic
function of the code, i.e., x¢(e) = 1 if ¢ € C and xc(e) = 0 else. Then the
characteristic function yo. of the dual code is proportional to the Hadamard
transformation Y¢ of x¢, i.e.,

IC] - xow(u) = Re(u) = Y (=1)*"xe(v).
vEF;
These are the main results used in the proof of the following theorem.
Theorem 1. Let Cy = [n,k1,di] and Cs = [n, ks, ds] be linear binary block

codes with Cy < Cy. Furthermore, let W = {w1,...,wg} be a sel of coset
representatives of C1 /Ci .

Then the K = 251=("=k2) mutually orthogonal states

quiI— EE:L|C_+1UZ (8)

span a quantum error correcting code C = [[n, k]] of length n and dimension 2%
where k = k1 — (n — k2). (The notation is similar to that for classical linear
block codes.) The code is able to correct up to (dy — 1)/2 bit—flip errors and up
to (dy — 1)/2 phase—flip errors.

Proof. (Sketch)

A general state in the code space can be written as

=Yl =Y el Y letwi) = 3 fele). )

i ceCt ceCy
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Since this is a superposition of states corresponding to the (classical) linear code
Cy, up to (dy — 1)/2 bit—flips can be corrected.

Hadamard transforming the state |2) (see equation (8)) results in

HE™ i)

R

Hence the Hadamard transform of |¢) (see equations (9)) can be written as

HE ) = 3 vele). (10)

ceCy

As this is a superposition of states corresponding to Csy, up to (dz —1)/2 bit—flip
errors with respect to the Hadamard transformed basis can be corrected, i.e.,
up to (dz2 — 1)/2 phaseflip errors in the original basis can be corrected.

Corollary 1. Theorem 1 applies particularly to weakly self dual codes C', 1. €.,
C < CL (setting C, = Cy = CL).

Next we will show how a quantum circuit for the encoding process can be con-
structed.

4.2 Encoding

As an example, we consider the linear binary Hamming code C' = [7,4, 3] that is
the linear row—span of the matrix GG;. The dual code C+ = [7,3, 4] is generated
by G2, where

G = and G,=10101110
0010111 0010111
0001101

Since the Hamming code contains its dual, we can construct a quantum error—
correcting code using Theorem 1 with ¢4 = Cy = C'. The last three rows of the
matrix

0001101 g4
o010ttt | |9
G=lo101110]| =g (11)
1001011 g1

generate C'+, and wo = (0,0,0,0,0,0,0) and w; = g4 are representatives of the
cosets C'/CL. The states of the quantum code (cf. equation (8)) can be written
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as
1 ) ) )
0) = ﬁ Z |0ga + i3g3 + t2g2 + i191)
§1,i2,i2€{0,1}
1 ) ) )
and [1) = % Z [1ga + isgs + 1292 + i191) . (12)

11,52,i3€{0,1}

(Note the similarity to the classical encoding in equation (3).)

Based on the fact that the matrix G in equation (11) is in lower triangular form,
a quantum circuit for the encoding |¢) = @ |0) 4+ 3 |1) = a |0) + 5 |1) = |¢) can
be deduced directly from G (see Fig. 3).

0) —#] I lex) 0o 0 1
loy —{H] I ) olo 1 0
o) —]H] : |ea) 0|1 0 0
) : D——— lca) G'=| 10 1 1
|0) D——P— |cs) 1110
|0) —D—O—O— |ce) ol1 1 1
|0) b——b D— ler) 111 01

Fig. 3. Encoding “binary” quantum codes

The upper three lines correspond to iy, 2, and i3 in (12). The Hadamard gates H
produce a superposition of |0) and |1) corresponding to the summation indices.
The next four rows of C NOT gates correspond to the summands i; g; in (12).
Whenever the control qubit corresponding to ¢; is one, the qubits corresponding
to positions of g; being one are inverted.

4.3 Syndrome Computation

The next task in the process of error correction is to perform the “syndrome”
measurement (cf. section 3.2). As shown in the proof of Theorem 1, bit—flip errors
and phase—flip errors can be treated separately. A bit—flip error on n qubits can
be written as

Ebit(e) =0, ®0,72®...Q O'xena

where e = (e, ea,...,e,) € . This error operator changes a general state of

the code (9) to

Eyit(e) (Z ﬁc|c>) = Z Belc+e).

ceCy ceCy
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Now we compute the error syndrome of the vector ¢+ e with respect to a parity
check matrix Hy of the code ' using auxiliary qubits as syndrome register. This
results in the state

S Ge(lete)olc+e)ny)) = (Z e |c+e>) oleHs).  (13)

ceCy ceCy

As the error syndrome s = eH? is independent of ¢, the state (13) is a tensor
product and measuring the syndrome register does not disturb the state of the
code register. The measurement reveals the classical syndrome s from which 1t
is possible to derive the (classical) error vector e. This allows to correct the
(quantum mechanical) bit—flip errors.

The treatment of the phase—flip errors is very similar to that of the bit—flip errors
due to their duality using Hadamard transformation. A phase—Aflip error of the
form

Ephase(e) = 0.281 & O'ze2 Q... O'zen

acts on the state (9) as

Bphase(€) (Z Be |c>) =D Be(=1)%%e).

ceCy ceCy

After Hadamard transformation the state is of the form (cf. equation (10))

Z Ve lc+e)

ceCy

since the phase—errors are changed into bit—flip errors. Using the same technique
as described above, the syndrome with respect to a parity check matrix Ho of the
code (5 can be measured. After another Hadamard transformation we return to
the original basis.

Again, we use the example of the Hamming code C' = [7,4, 3] to illustrate the
preceding. As C1 = Cy = C'in the construction of the quantum code using The-
orem 1, the syndromes for both the bit—flip errors and the phase—flip errors are
computed using a parity check matrix for C'. For this, we can use the generator
matrix

=N =R ==
[ R = =)
= =)

of the dual C*+ of the Hamming code. The quantum circuit for the computation
of the whole “quantum syndrome” is shown in Fig. 4.
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lex) ) H— le1)

o2} I - |c2)

les) El [H— |cs)

lca) El [H— |ca)

les) El [H— lcs)

lee) El [H— |ce)

le7) H] [H}— ler)

|0) 1)

|0) |s2) ¢ bitflips

|0) EEY

|0) [54)

|0) |55) phase—flips
) )

Fig. 4. Syndrome computation for “binary” quantum codes

The first group of four C NOT gates corresponds to the computation of the inner
product of the vector ¢ = (¢1, ¢a, ..., ¢7) with the first column of the parity check
matrix H*. (Recall from equation (2) that a CNOT gate maps the state |a) |b)
to |a) |a & b).) The next two groups of CNOT gates serve to compute the inner
products of ¢ with the second and third column of H*®. After the Hadamard
transform, the syndrome corresponding to phase—flip errors is computed in the
same manner.

5 More Relations between Classical and Quantum Codes

Quantum error—correcting codes can not only be constructed from classical linear
binary codes, but also from quaternary codes (cf. [4]). Again, quantum circuits
for encoding and syndrome computation can be directly derived from certain
generator and parity check matrices of the classical codes (see [9,15]). Another
class of quantum error—codes, the class of non—binary codes, parallels classical
non-linear codes (cf. [14]).

It is also possible to construct classical error—correcting codes from some quan-
tum error—correcting codes (see [8]). Although the codes obtained are not of
great interest to be used in their original context, namely for error correction,
the construction allows the translation of bounds for classical codes into bounds
for quantum error—correcting codes. Such bounds are also obtained via a quan-
tum version of the famous MacWilliams identities (see [19] and [21]).

In this paper, we have not addressed one of the major problems of coding theory,
the question of how to determine the most likely error given the error syndrome.
This is subject of ongoing research (see, e.g., [3,15, 16]).
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