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Codes for the quantum erasure channel
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The quantum erasure channel~QEC! is considered. Codes for the QEC have to correct for erasures, i.e.,
arbitrary errors at known positions. We show that four quantum bits are necessary and sufficient to encode one
quantum bit and correct one erasure, in contrast to five quantum bits for unknown positions. Moreover, a
family of quantum codes for the QEC, the quantum Bose-Chaudhuri-Hocquenghem codes, that can be effi-
ciently decoded is introduced.@S1050-2947~97!01505-9#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

The prospect of speeding up certain classes of comp
tions by utilizing the quantum-mechanical superposit
principle and the physics of entanglement has receive
great deal of attention lately@1#. The potentially useful quan
tum algorithms so far include factorization of large numb
@2#, database search@3#, and simulation of quantum
mechanical systems@4#. Recent theoretical and experiment
progress in atomic physics and quantum optics has sh
that small-scale quantum computing is feasible@5–8#.

However, building a quantum computer is an extrem
difficult task. The major obstacle is the coupling of the qua
tum computer to the environment, which destroys quantu
mechanical superpositions very rapidly. This effect is usua
referred to asdecoherence@9#. It is thus of crucial impor-
tance to find schemes to actively suppress andundo the ef-
fects of decoherence.

Schemes to protect static quantum states against dec
ence were found independently by Shor@10# and Steane
@11,12#. Their proposals gave rise to a large number of s
sequent publications~see, for example,@13,14# and refer-
ences therein!. Thus the theory ofquantum error-correcting
codesis increasingly well understood.

In most publications the focus is on finding quantu
codes for the most general error model. These quan
codes can correct for arbitrary errors at unknown position
the code word. However, in many realistic situations ad
tional information on possible errors is available. For e
ample, the physical system may permit dephasing errors
or bit-flip errors only. Of course more efficient codes a
possible for restricted error models. For example, the sm
est quantum code to correct for errors due to dephasing~or
due to bit-flips! has length 3@15#. On the other hand, Knill
and Laflamme have shown that the length of the smal
quantum code for arbitrary errors is five quantum bits~qu-
bits! @13#.

In this paper we consider an error model where the p
tion of the erroneous qubits is known. In accordance w
classical coding theory we shall call this model thequantum
erasure channel~QEC!. Below, a few physical systems ar
discussed where this model is applicable. The main resul
561050-2947/97/56~1!/33~6!/$10.00
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the present paper are as follows:~i! an explicit example of a
code for the quantum erasure channel~QEC code! with four
qubits that can correct one erasure is presented;~ii ! a proof is
presented that four qubits are minimal;~iii ! a construction for
a family of QEC codes based on classical Bose-Chaudh
Hocquenghem~BCH! codes is given. For these codes ef
cient algorithms for correcting erasures exist.

The paper is organized as follows. In Sec. II we introdu
the quantum erasure channel. The error model is discu
and a physical motivation is given. In Sec. III a four-qub
code for the QEC is given and the proof is presented t
four qubits are minimal. A construction for quantum BC
codes is given in Sec. IV.

II. THE QUANTUM ERASURE CHANNEL

Whenever the position of an error can be determined
an appropriate measurement the QEC error model applie
the following we give a few examples for physical scenar
where this is the case.

~i! If errors are accompanied by the emission of qua
they can in principle be detected. For example, if the qub
are represented by atoms an important source of error
spontaneous emission. Spontaneous photons can be obs
by photodetection techniques. There is, however, the d
culty that spontaneous photons from free atoms are em
in a solid angle of 4p and will very likely elude observation
One may circumvent this problem by modifying the mod
structure of the surrounding electromagnetic field by plac
the atoms within a cavity and thereby channeling sponta
ous decay@16#. Under appropriate conditions photons esca
primarily via cavity decay through the cavity mirrors in
well-defined spatial direction. There may also be the po
bility to detect the emission of photons by other means,
example via the photon recoil. Similarly, if quantum bits a
stored in quantized cavity modes a detected cavity pho
indicates an error@17#.

~ii ! It is usually assumed that the system spaceHsys is a
tensor product of two-dimensional spacesH2 ~qubits!, i.e.,

Hsys5H2^ ••• ^H2 .
33 © 1997 The American Physical Society
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However, this is an approximation. For example, atoms u
ally have many levels that may be populated due to an
wanted dynamical evolution of the system. Thus the Hilb
space of the systemHsys is a tensor product of multidimen
sional spaces with two-dimensional subspaces used for c
puting:

Hsys5Hk^ ••• ^Hk ,

Hcomp5H2^ ••• ^H2 ,

whereHcomp is the subspace of allowed computational stat
Each two-dimensional spaceH2 is a subspace ofHk , but not
necessarily a tensor factor ofHk . ~For simplicity we assume
that the dimensions of all tensor factors are equal.! There-
fore, the system spaceHsys can only be decomposed as
direct sum of subspaces

Hsys5Hcomp%Hcomp
'

and generally not as a tensor product. During error-free c
putations the system remains inHcomp. Any population
found inHcomp

' is the signature of an error. Besides, we c
learn about the position of the error by determining wh
subsystem has left the allowed Hilbert spaceH2. The erro-
neous subsystem can then be reset by hand to an arb
state inH2, u0& say. As an example we may think of an ato
in which unwanted levels are coupled to the ‘‘allowed’’ tw
level system by nonresonant laser interaction. We can m
sure the population in these levels, for example, by apply
the quantum-jump technique@18#.

~iii ! QEC codes may be useful infault tolerant quantum
computing.This scheme was recently proposed by Shor a
permits one to perform quantum computations and error
rection with a network of erroneous quantum gates@19#. We
may assume that only quantum gates introduce errors
that errors can be detected by appropriate measuremen
this case it is not necessary to use a quantum code for
most general error model because it is known to which
bits the quantum gate was applied when an error is detec
For example, in the cavity QED quantum computer mo
system proposed by Pellizzariet al. @8# the quantum infor-
mation is safely stored in stable Zeeman ground-state le
while no computations are performed. However, during g
operation a single mode of a quantized cavity is excit
which is much more fragile a quantum system. A photo
tector that records photons leaking out of the cavity indica
errors in those atoms that are involved in the current qu
tum gate.

~iv! It is worthwhile noting that there is a strong conne
tion of codes for the QEC to the error correction scheme
quantum gates recently proposed by Ciracet al. @20#. This
scheme is designed to correct for a specific but impor
error in the ion trap quantum computer during quant
gates. In this error model errors are caused by decays in
center-of-mass phonon mode, which is temporarily exci
during quantum gate operation. If a residual population
the phonon mode is found an error is detected. As abov
~iii ! the position of the error is known and thus the QE
error model applies. In this scheme each logical qubit is
coded in two physical qubits. One might expect that a fo
qubit code is required for this scheme since the smallest c
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conforming to the QEC has length 4. However, two qub
are sufficient because specific assumptions about the typ
errors are made.

III. CODES FOR THE QEC

A. Conditions on codes for the QEC

For the general case, Knill and Laflamme@13# derived
necessary and sufficient conditions on quantum er
correcting codesQC. Given a set of error operators$Ai% the
conditions on statesuck&PQC are

^ckuAi
†Aj uck&5^cl uAi

†Aj ucl&, ~1!

^ckuAi
†Aj ucl&50 for ^ckucl&50. ~2!

For a code of lengthN that can correctt errors the error
operators$Ai% are of a special form. They are allt-error
operators, i.e., operators that differ on at mostt of the tensor
factors ofH5H2

^N from identity. In Eqs.~1! and ~2! it is
sufficient to consider algebra bases fort-error operators. The
bases might be tensor products of local bases, e.g., the i
tity 1 and the Pauli spin matrices$sx ,sy ,sz%, or the opera-
tors u0&^0u, u1&^0u, u0&^1u, andu1&^1u. In this paper we con-
sider the one-error operatorsPi j

k that are the operator
u i &^ j u applied to thekth qubit.

For the QEC there are similar conditions. Since the po
tions of the errors are known by definition there is no need
separate the spaces corresponding to errors at different
tions. Therefore, in Eqs.~1! and ~2! only t-error operators
Ai andAj that differ from identity at the same positions ha
to be considered. But the product of sucht-error operators is
also at-error operator and can be written as linear combi
tion of theAi since they are an algebra basis. Hence~1! and
~2! reduce to

^ckuAi uck&5^cl uAi ucl&, ~3!

^ckuAi ucl&50 for ^ckucl&50. ~4!

Equations~1! and~2! for t-error operatorsAi imply Eqs.~3!
and ~4! for 2t-error operators since the operatorsAi

†Aj are
bases for 2t-error operators. Hence a quantum erro
correcting code correctingt errors is a 2t erasure-correcting
code.

B. QEC code with four qubits

For the general situation it was shown that the shor
code to encode one qubit and to correct one error has le
5 @13,21#. To encode one qubit and correct one erasure, h
ever, four qubits are sufficient as demonstrated by the c
QC given by

u0 &5u0000&1u1111&,

u1 &5u1001&1u0110&.

~To simplify the notation, normalization factors are omitte
here and in the remainder of the paper.! In @11,12# it is
shown that it is sufficient to correct bit flips in two bases th
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56 35CODES FOR THE QUANTUM ERASURE CHANNEL
are Hadamard transforms of each other. The Hadam
transform of the codeQC corresponds to the ‘‘dual’’ code
QC' given by

u0'&5Hu0 &5u0000&1u0011&1u0101&1u0110&

1u1001&1u1010&1u1100&1u1111&,

u1'&5Hu1 &5u0000&2u0011&2u0101&1u0110&

1u1001&2u1010&2u1100&1u1111&.

By definition of an erasure the position of the error is know
but it is not known what the error is. Since all states of bo
the codeQC and its dualQC' have even weight, for both
bases a single bit-flip error can be detected by computing
overall parity. Odd parity indicates an error. Thus any o
bit error can be corrected since correcting single bit flips
both bases is sufficient.

The codeQC can be extended by the two statesu2 & and
u3 &,

u2 &5u1100&1u0011&,

u3 &5u1010&1u0101&,

with

u2'&5Hu2 &5u0000&1u0011&2u0101&2u0110&

2u1001&2u1010&1u1100&1u1111&,

u3'&5Hu3 &5u0000&2u0011&1u0101&2u0110&

2u1001&1u1010&2u1100&1u1111&.

Thus the extended code encodes not only one, but two qu
and corrects for one erasure. Note that this code is equiva
to the code used for error detection in@22#. The existence of
a code with these parameters was shown, e.g., in@14#.

C. There is no QEC code with fewer than four qubits

In this section we prove that at least four qubits are
quired for a code that can correct one erasure and enc
one qubit. First we investigate when a quantum code can
shortened.

Theorem 1. Let QC be a quantum error-correcting cod
that can correct at least one erasure. If a one-qubit s
uu0& is a factor of a stateuf0&PQC it is a factor of all states
uf&PQC.

Proof. Assume without loss of generality that the fir
qubit is a factor, i.e.,uf0&5uu0&uc0&. Inserting the local op-
erator Puu0&5uu0&^u0u ^ 1 in Eq. ~3! yields, for any state

uf&PQC,

^fuPuu0&uf&5^f0uPuu0&uf0&51.

Henceuu0& is a factor of every code state.
Thus we have the following corollary.
Corollary 1. If a quantum codeQC of length N has a

one-qubit factor deleting this position yields a quantum co
QC8 of lengthN21 and equal dimension with same erro
correcting capabilities.
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Next we show that every two-dimensional subspace
H2^H2 contains at least one product state.

Lemma 1. For every two-dimensional subspace
H2^H2 there is a basis that contains at least one prod
state, i.e., a stateup&5up1&up2&.

Proof. Let the subspace be generated by$ub1&,ub2&%. A
product stateup&PH2^H2 is characterized by

^00up&^11up&5^01up&^10up&. ~5!

Insertingup&5h1ub1&1h2ub2& in Eq. ~5! yields a quadratic
equation for the complex coefficientsh1 andh2:

05c1h1
21c12h1h21c2h2

2 , ~6!

with

c15^00ub1&^11ub1&2^01ub1&^10ub1&,

c125^00ub1&^11ub2&1^11ub1&^00ub2&

2^01ub1&^10ub2&2^10ub1&^01ub2&,

c25^00ub2&^11ub2&2^01ub2&^10ub2&.

If c1 vanishesub1& is a product state and the lemma hold
Similarly, ub2& is a product state ifc250. Now consider the
casec1Þ0 andc2Þ0. The solutions of Eq.~6! are given by

h15
2c126Ac122 24c1c2

2c1
h2 .

For c1Þ0 andc2Þ0 there is at least one nontrivial solutio
with h1Þ0 andh2Þ0 and thus a product state exists.

Using Lemma 1 we are able to prove the following the
rem.

Theorem 2. There is no quantum error-correcting code
length 2 that can correct one erasure and encodes one q

Proof.Assume that such a code exists. The statesu0 & and
u1 & span a two-dimensional subspaceQC of H2^H2. Ac-
cording to Lemma 1,QC contains a product stat
up1&up2&. From Theorem 1 it follows that bothup1& and
up2& are factors of all code states and thus the code canno
two-dimensional.

Theorem 3. There is no quantum error-correcting code
length 3 that can correct one erasure and encodes one q

Proof. Assume that such a code exists. Since there is
code of length 2 the states in the code cannot be facto
With reference to the first qubit the encoding can be writ
as

u0 &5u0&uF0&1u1&uF1&,

u1 &5u0&uQ0&1u1&uQ1&,

where uF i&,uQ j& are, in general, unnormalized and nono
thogonal states. The statesuF0& anduF1& have to be linearly
independent since otherwiseu0 & is a product state and a cod
of length one exists~cf. Corollary 1!. Similarly, uQ0& and
uQ1& have to be linearly independent.

For the projectionsPi j
(1)5u i &^ j u ^ 1^ 1, i , jP$0,1% Eq. ~4!

implies
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^1uP00
~1!u0 &5^Q0uF0&50,

^1uP10
~1!u0 &5^Q1uF0&50,

^1uP01
~1!u0 &5^Q0uF1&50,

^1uP11
~1!u0 &5^Q1uF1&50.

Thus the subspacesHu0 & spanned by$uF0&,uF1&% andHu1 &

spanned by$uQ0&,uQ1&% are two dimensional and orthogo
nal. This yields a decomposition of the joint Hilbert space
the second and third qubits:

H2^H25Hu0 & %Hu & .

We now choose an orthonormal basisB5$ub1&,
ub2&,ub3&,ub4&% for the Hilbert space of the second and thi
qubits such that$ub1&,ub2&% and $ub3&,ub4&% spanHu0 & and
Hu1 & , respectively. In the orthonormal basisB, the code-
words can be written as

u0 &5ua&ub1&1ub&ub2&

u1 &5ug&ub3&1ud&ub4&,

where ua&, ub&, ug&, and ud& are, in general, unnormalize
and nonorthogonal states in the Hilbert space of the
qubit.

According to Lemma 1, without loss of generalityub1&
and ub3& can be assumed to be product states. Since a l
unitary transformation of aQC yields anotherQC with same
parameters, without loss of generalityub1&5u00& can be cho-
sen. At least one factor of the product stateub3&, say the first
one, has to beu1& since^b1ub3&50.

Therefore, the orthonormal basisB has the form

ub1&5u00&,

ub2&5k1u01&2k2b31* u10&1k2b30* u11&,

ub3&5b30u10&1b31u11&,

ub4&52k2* u01&2k1* b31* u10&1k1* b30* u11&,

with uk1u21uk2u251 andub30u21ub31u251. The code words
are of the form

u0 &5ua&u00&1k1ub&u01&2k2b31* ub&u10&1k2b30* ub&u11&

u1 &52k2* ud&u01&1b30ug&u10&2k1* b31* ud&u10&1b31ug&u11&

1k1* b30* ud&u11&. ~7!

If k250 the stateu0 & would have the factoru0& at the second
position and a code of length 2 would exist. Therefore,
havek2Þ0.

From Eqs.~4! and ~7! we obtain the conditions

05^1uP00
~2!u0 &52k1k2^dub&, ~8!

05^1uP01
~3!u0 &5k2~b30* !2^gub&2k1k2b30* b31̂ dub&, ~9!
f

st

al

e

05^1uP10
~3!u0 &

52k2^dua&2k2~b31* !2^gub&2k1k2b30b31* ^dub&,

~10!

05^1uP10
~2!u0 &

5b30* ^gua&2k1b31̂ dua&1k1b31* ^gub&1k1
2b30̂ dub&,

~11!

05^1uP01
~2!u0 &52k2

2b30* ^dub&. ~12!

In the following we distinguish whether or notk1 and b30
vanish.

~i! k1Þ0, b30Þ0: From Eq. ~8! follows ^dub&50 and
thus Eq.~9! reduces tô gub&50.

~ii ! k1Þ0, b3050: From Eq.~8! follows ^dub&50. Equa-
tions ~10! and ~11! reduce to

2k2^dua&2k2~b31* !2^gub&50,

2k1b31̂ dua&1k1b31* ^gub&50.

This implies^dua&50 and^gub&50.
~iii ! k150, b30Þ0: From Eqs. ~12! and ~9! follows

^dub&50 and^gub&50.
~iv! k150, b3050: The basis statesub3& and ub4& are

u11& andu01&, i.e., u1 & has the factoru1& in the third position.
For the first three caseŝdub&50 and^gub&50 implies

that ug& and ud& are linearly dependent orub&50. Both re-
sults in a factorization of the code. Thus, for all cases
code can be factored and thus reduced to a code of leng
which contradicts Theorem 2.

IV. QUANTUM BCH CODES

In principle, every quantum error-correcting code appl
for the quantum erasure channel since at error-correcting
code is a 2t erasure-correcting code. But even for classi
codes, error correction is a hard task@23#. The same is true
for the correction of erasures.

But for some codes there are efficient algorithms to c
rect erasures and errors. Using the algorithm of Berleka
and Massey@24# for decoding binary BCH codes with de
signed distancedBCH, n erasures andt errors can be cor-
rected provided thatn12t,dBCH.

In this section we present a construction of quant
error-correcting codes based on certain binary BCH co
that can be decoded efficiently using the algorithm of Ber
kamp and Massey. In a recent paper@14# the termquantum
BCH codeis used for codes derived from BCH codes ov
GF(4). This definition is more general than ours since eve
cyclic code overGF(2) is a subcode of a cyclic code ove
GF(4). But a BCHcode overGF(4) need not be a binary
BCH code and thus correction of erasures for the codes
fined in @14# is not straightforward.

The construction of quantum codes from classical code
based on the following theorem@12#.

Theorem 4. Given two classical binary error-correctin
codesC15@N,K1 ,d1# andC25@N,K2 ,d2# such thatC1 con-
tains the dual ofC2, i.e.,C2'<C1, a quantum error-correcting
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codeQC5@@N,K12(N2K2),min(d1,d2)## exists.
HereC5@N,K,d# denotes a classical binary linear erro

correcting code of lengthN, dimensionK, and minimum
distance d; QC5@@N,K,d## denotes a quantum erro
correcting code withN qubits that encodesK qubits and
allows correction of arbitrary errors of at leastt,d/2 qubits.
Decoding ofQC is based on~classical! decoding algorithms
for C1 andC2.

We consider the special case whereC15C25C. Then
C'<C is required, i. e.,C' has to be a weakly self-dual cod
and an efficient decoding algorithm forC is needed. For the
construction of quantum BCH codes,C is chosen to be a
binary BCH code withC' weakly self-dual.

Definition 1 (quantum BCH codes!. Let C be a binary
BCH code withC' weakly self-dual. The states of the qua
tum BCH~QBCH! code code are given~up to normalization!
by

ucv&5 (
cPC'

uc1v& for vPC/C'.

In the remainder of this section we show how to constr
the BCH codes needed for QBCH codes. First we re
some properties of BCH codes~for proofs and details see, fo
example,@25#!.

A cyclic code of lengthN is defined by the set of roots o
its generator polynomial. The roots are distinct powers o
primitive Nth root a. Equivalently, the code correspond
to the set of exponents of the roots of its generator po
nomial, thedefining setIC . For binary cyclic codes the de
fining set is a union of cyclotomic cosetsCi :
5$ i 2kmodN:k50,1,2, . . .%. For the construction of a bi
nary BCH code with designed distancedBCH, IC is chosen as
IC5CbøCb11ø•••øCb1dBCH22 , i.e., the union of cyclo-

tomic cosets ofdBCH21 consecutive numbers.
The defining setIC' of the dual codeC' can be computed

from that of the code in the following manner:

IC'5 ø
iPIC

C2 i ,
i

e

on

.

o-

.

t
ll

a

-

where IC5$0, . . . ,N21%\IC . A cyclic code C is weakly
self-dual if and only if the defining setIC contains that of its
dual, i.e.,IC'#IC or, equivalently,IC'ùIC5B.

For the QBCH codes, a binary BCH codeC with C'
weakly self-dual is needed. Therefore, the condition forC is

ø
iPIC

Ci5IC#IC'5 ø
jPIC

C2 j5 ø
j¹IC

C2 j .

Thus IC must not contain bothCi andC2 i . In particular,
IC must not contain cyclotomic cosets withCi5C2 i .

The following lemma summarizes the preceding.
Lemma 2 (BCH codes for QBCH codes).Let C be a binary

BCH code of lengthN and defining setIC such that

; i :@ iPIC⇒~2 imodN!¹IC#.

Then the dual codeC' is weakly self-dual and a QBCH cod
can be constructed.

V. CONCLUSION

We conclude by noting that finding efficient codes f
restricted error models is relevant for proof-of-princip
demonstrations of quantum error correction in the near
ture. The first prototype quantum computers will presuma
have only a few qubits and will not be powerful enough
implement the most general error correction schemes.
example, a simplified demonstration of quantum error c
rection could consist in deliberately inducing an error in
known qubit. In this case the QEC error model applies.
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