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The quantum erasure chand€EQ) is considered. Codes for the QEC have to correct for erasures, i.e.,
arbitrary errors at known positions. We show that four quantum bits are necessary and sufficient to encode one
guantum bit and correct one erasure, in contrast to five quantum bits for unknown positions. Moreover, a
family of quantum codes for the QEC, the quantum Bose-Chaudhuri-Hocquenghem codes, that can be effi-
ciently decoded is introducefiS1050-2947@7)01505-9

PACS numbd(s): 03.65.Bz

[. INTRODUCTION the present paper are as follows: an explicit example of a
code for the quantum erasure chan(@EC code with four

The prospect of speeding up certain classes of computatubits that can correct one erasure is preseritigds proof is
tions by utilizing the quantum-mechanical superpositionpresented that four qubits are minimai;) a construction for
principle and the physics of entanglement has received & family of QEC codes based on classical Bose-Chaudhuri-
great deal of attention late[L]. The potentially useful quan- Hocquenghem(BCH) codes is given. For these codes effi-
tum algorithms so far include factorization of large numberscient algorithms for correcting erasures exist. .
[2], database searchi3d], and simulation of quantum- The paper is organized as follows. In Sec. Ilwg mt_roduce
mechanical systen{d]. Recent theoretical and experimental the quantum erasure channel. The error model is discussed
progress in atomic physics and quantum optics has showdnd a physical mot_|vat|_on is given. In Sec._ Il a four-qubit
that small-scale quantum computing is feasilde 8]. code for_the QEC_ is given and the _proof is presented that

However, building a quantum computer is an extremelyfour qults_ are_mlnlmal. A construction for quantum BCH
difficult task. The major obstacle is the coupling of the quan-codes is given in Sec. IV.
tum computer to the environment, which destroys quantum-
mechanical superpositions very rapidly. This effect is usually
referred to asdecoherencg9]. It is thus of crucial impor- Il. THE QUANTUM ERASURE CHANNEL

tance to find schemes to actively suppress andothe ef- Whenever the position of an error can be determined by
fects of decoherence. an appropriate measurement the QEC error model applies. In

Schemes to protect static quantum states against decoheke following we give a few examples for physical scenarios
ence were found independently by SHdAO] and Steane \yhere this is the case.
[11,12. Their proposals gave rise to a large number of sub- (i) If errors are accompanied by the emission of quanta
sequent publicationssee, for example[13,14 and refer-  they can in principle be detected. For example, if the qubits
ences therejn Thus the theory ofjuantum error-correcting  gre represented by atoms an important source of errors is
codesis increasingly well understood. spontaneous emission. Spontaneous photons can be observed

In most publications the focus is on finding quantumpy photodetection techniques. There is, however, the diffi-
codes for the most general error model. These quantumgyity that spontaneous photons from free atoms are emitted
codes can correct for arbitrary errors at unknown positions ifin 3 solid angle of 4 and will very likely elude observation.
the code word. However, in many realistic situations addi-gne may circumvent this problem by modifying the modal
tional information on possible errors is available. For ex-strycture of the surrounding electromagnetic field by placing
ample, the physical system may permit dephasing errors onkfe atoms within a cavity and thereby channeling spontane-
or bit-flip errors only. Of course more efficient codes areq,g decay16]. Under appropriate conditions photons escape
possible for restricted error models. For example, the smallprimar“y via cavity decay through the cavity mirrors in a
est quantum code to correct for errors due to depha@ing \ye|l-defined spatial direction. There may also be the possi-
due to bit-flipg has length 315]. On the other hand, Knill " pjjity to detect the emission of photons by other means, for
and Lafllmme have shown that the length of the smallestxample via the photon recoil. Similarly, if quantum bits are
quantum code for arbitrary errors is five quantum 8- stored in quantized cavity modes a detected cavity photon
bits) [13]. indicates an errof17].

In this paper we consider an error model where the posi- (ii) It is usually assumed that the system spatg is a

tion of the erroneous qubits is known. In accordance withyensor product of two-dimensional spadés (qubits, i.e.,
classical coding theory we shall call this model theantum

erasure channe(QEC). Below, a few physical systems are
discussed where this model is applicable. The main results of Hsys= Ho® -+ @H,.
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However, this is an approximation. For example, atoms usueonforming to the QEC has length 4. However, two qubits
ally have many levels that may be populated due to an unare sufficient because specific assumptions about the type of
wanted dynamical evolution of the system. Thus the Hilberterrors are made.
space of the systerts s is a tensor product of multidimen-
sional spaces with two-dimensional subspaces used for com- Ill. CODES FOR THE QEC

uting:
P d A. Conditions on codes for the QEC

Heoys= M@ @Hy, For the general case, Knill and Laflamrfie3] derived

necessary and sufficient conditions on quantum error-
correcting code®)C. Given a set of error operatof#\} the

whereHompis the subspace of allowed computational statesconditions on statef,) € OC are

Hcomp: H2® T ®H2,

Each two-dimensional spa@é, is a subspace of(,, but not A [\ fa
necessarily a tensor factor #f, . (For simplicity we assume (el AlAj[e)y = (| AA e, )
that the dimensions of all tensor factors are equihere- "

(cilAlAjlc;)=0 for (c|c;)=0. 2

fore, the system spack, can only be decomposed as a

direct sum of subspaces
P For a code of lengtiN that can correct errors the error

Heys= Heomp® Hcomp operators{.Ai} are of a specia_l form. They are dHerror
operators i.e., operators that differ on at mdsof the tensor
and generally not as a tensor product. During error-free comfactors ofH=H§’N from identity. In Egs.(1) and (2) it is
putations the system remains K¢, Any population sufficient to consider algebra bases faerror operators. The
found in Héomp is the signature of an error. Besides, we canbases might be tensor products of local bases, e.g., the iden-
learn about the position of the error by determining whichtity 1 and the Pauli spin matricdsr, ,0,0,}, or the opera-
subsystem has left the allowed Hilbert spd¢e The erro-  tors|0){0|, |1){0|, |0)(1|, and|1)(1|. In this paper we con-
neous subsystem can then be reset by hand to an arbitragjder the one-error operatorBj; that are the operators
state in,, |0) say. As an example we may think of an atom |i)(j| applied to thekth qubit.
in which unwanted levels are coupled to the “allowed” two-  For the QEC there are similar conditions. Since the posi-
level system by nonresonant laser interaction. We can meaions of the errors are known by definition there is no need to
sure the population in these levels, for example, by applyingeparate the spaces corresponding to errors at different posi-
the quantum-jump techniqyég]. tions. Therefore, in Eqsl) and (2) only t-error operators
(iii) QEC codes may be useful fault tolerant quantum  A; andA; that differ from identity at the same positions have

computing.This scheme was recently proposed by Shor ando be considered. But the product of sueérror operators is
permits one to perform quantum computations and error coralso at-error operator and can be written as linear combina-

rection with a network of erroneous quantum gate®. We  tjon of theA; since they are an algebra basis. Hefibeand
may assume that only quantum gates introduce errors an@) reduce to
that errors can be detected by appropriate measurements. In

this case it is not necessary to use a quantum code for the (el Ailc)y={(c/|Ailc), ©)
most general error model because it is known to which qu-
bits the quantum gate was applied when an error is detected. (cAilc)y=0 for (c/c;)=0. (4)

For example, in the cavity QED quantum computer model

system proposed by Pellizzast al. [8] the quantum infor- Equations(1) and (2) for t-error operatorg\, imply Egs.(3)
mation is safely stored in stable Zeeman ground-state levelg,q (4) for 2t-error operators since the operaterA are
while no computations are performed. However, during gal®y55es for Perror operators. Hence a quantur# error-

operation a single mode of a quantized cavity is exC'teo't:orrectmg code correctingerrors is a 2 erasure-correcting
which is much more fragile a quantum system. A photode-

tector that records photons leaking out of the cavity indicates
errors in those atoms that are involved in the current quan- ) ]
tum gate. B. QEC code with four qubits

(iv) It is worthwhile noting that there is a strong connec-  For the general situation it was shown that the shortest
tion of codes for the QEC to the error correction scheme foicode to encode one qubit and to correct one error has length
quantum gates recently proposed by Cied@l. [20]. This  5[13,21]. To encode one qubit and correct one erasure, how-
scheme is designed to correct for a specific but importangver, four qubits are sufficient as demonstrated by the code
error in the ion trap quantum computer during quantumgQ(C given by
gates. In this error model errors are caused by decays in the

center-of-mass phonon mode, which is temporarily excited |0)=|0000+|1113),
during quantum gate operation. If a residual population in
the phonon mode is found an error is detected. As above in |1)=[1002)+[0110.

(iii) the position of the error is known and thus the QEC

error model applies. In this scheme each logical qubit is entTo simplify the notation, normalization factors are omitted
coded in two physical qubits. One might expect that a fourhere and in the remainder of the papdn [11,17 it is
qubit code is required for this scheme since the smallest codghown that it is sufficient to correct bit flips in two bases that
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are Hadamard transforms of each other. The Hadamard Next we show that every two-dimensional subspace of
transform of the codeC corresponds to the “dual”’ code H,®H, contains at least one product state.

QC* given by Lemma 1. For every two-dimensional subspace of
" H,®H, there is a basis that contains at least one product
[0°)=H|0)=|0000 +|0013)+[0103) +|0110 state, i.e., a stater)=|m;)|7,).

Proof. Let the subspace be generated {by,),|b,)}. A
product statéw) e H,® H, is characterized by

(00| )11 ) =(01| m)(10/ ). (5)

Inserting| ) = 71|b1) + 7,|b,) in Eq. (5) yields a quadratic
By definition of an erasure the position of the error is known,equation for the complex coefficienis, and 7,:

but it is not known what the error is. Since all states of both ) )

the codeQC and its dualQC* have even weight, for both 0=cCy7i+Crom1 72+ Cam3, (6)
bases a single bit-flip error can be detected by computing the .
overall parity. Odd parity indicates an error. Thus any oneW
bit error can be corrected since correcting single bit flips in
both bases is sufficient.

|3>1"he codeQC can be extended by the two sta{@s and C1o=(00b;)(11/b,) +(11]b,)(00 by)

—(01|b;){10{b2) ~ (10b1){01[bo),

+]1001) +|1010 +|1100 +|1111),
|14)=H|1)=]0000 —|0013 0103 +|0110
+|1001) — 1010 — [1100 +|1111).

¢;=(00by)(11|b;)—(01fb;)(10b,),

|2)=[1100+|0011),

15)= {1010 + [o109, ¢2=(001b){11b;) —(01b,)(10b,).

If ¢, vanishegb,) is a product state and the lemma holds.

with Similarly, |b,) is a product state i€,=0. Now consider the
12y =H|2)=|0000 + 0011 — 0101 — |0110) casec,;# 0 andc,# 0. The solutions of Eq(6) are given by
—[1001)—|1010 +|1100 +|1111), —Cpp* \/0212— 4c.Cy
M= 2¢, 72-

|3")=H|3)=]0000 - 0017 +|010 - 0110
Forc,#0 andc,#0 there is at least one nontrivial solution
—[1003+]1010 ~[1100 +|1113. with n,#0 and»n,#0 and thus a product state exists.

Thus the extended code encodes not only one, but two qubits Using Lemma 1 we are able to prove the following theo-

and corrects for one erasure. Note that this code is equivale
to the code used for error detection[R2]. The existence of
a code with these parameters was shown, e.g14h

Theorem 2There is no quantum error-correcting code of
length 2 that can correct one erasure and encodes one qubit.
Proof. Assume that such a code exists. The stf¢sand

|1) span a two-dimensional subspag@€ of H,®H,. Ac-
cording to Lemma 1, QC contains a product state
In this section we prove that at least four qubits are re4s )| x,). From Theorem 1 it follows that bothmr,) and
quired for a code that can correct one erasure and encodes,) are factors of all code states and thus the code cannot be
one qubit. First we investigate when a quantum code can bgyo-dimensional.
shortened. _ Theorem 3There is no quantum error-correcting code of
Theorem 1Let QC be a quantum error-correcting code |ength 3 that can correct one erasure and encodes one qubit.
that can correct at least one erasure. If a one-qubit state proof. Assume that such a code exists. Since there is no
|6) is a factor of a statépo) e QC it is a factor of all states  code of length 2 the states in the code cannot be factored.

|p) e QC. With reference to the first qubit the encoding can be written
Proof. Assume without loss of generality that the first gg

qubit is a factor, i.e.|¢o)=|60)| o). Inserting the local op-
erator P 4, =|60)(f|®1 in Eq. (3) yields, for any state |0)=10)|®g)+[1)| D),

|p) e QC,

C. There is no QEC code with fewer than four qubits

11)=10)|00)+[1)|®),

(DI Py )= {0l P|ogy| po) =1. . _
where|®;),|0;) are, in general, unnormalized and nonor-
Hence| d,) is a factor of every code state. thogonal states. The stateB,) and|®;) have to be linearly
Thus we have the following corollary. independent since otherwif@) is a product state and a code
Corollary 1. If a quantum codeQC of length N has a  of length one existgcf. Corollary 3. Similarly, |®,) and
one-qubit factor deleting this position yields a quantum codd®1) have to be linearly independent.
QC’ of lengthN—1 and equal dimension with same error-  For the projection®{”=i)(j|®1®1, i,j €{0,1} Eq. (4)
correcting capabilities. implies
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(1|PR|0)=(O|Po)=0,

<1| P(l%))|9>:<®1|q’o>:0'

0=(1/P|0)
== kz( 5| 0‘) - kz(b§1)2< 7|,3> - k1k2b30b§1< 5|,3>,

(10)
(1|P57[0)=(@o|®1)=0,
0=(1/P3|0)
(1) — -

<1|P11 |9> (©a]2:)=0. = b3 7| @) —kibs( 8l a) +ky §1<’Y|B>+k§b30<5|ﬂ>a
Thus the subspacég|o, spanned by{|Po),[®1)} andH)y (12)
spanned by{|®,),|®,)} are two dimensional and orthogo-
nal. This yields a decomposition of the joint Hilbert space of 0=(1|P{?|0)=—k3b3 3| B). (12)

the second and third qubits:
H2®H2:H|g>@H|p.

We now choose an orthonormal basi8={|b,),

|b,),|bs),|bs)} for the Hilbert space of the second and third

qubits such thaf|b,),|b,)} and{|bs),|bs)} spantH,q, and
Hy1y, respectively. In the orthonormal badss the code-
words can be written as

0)=|a)|by)+[B)[b)

|1)=|»)|bz)+|8)|ba),

In the following we distinguish whether or né& and bs,
vanish.

(i) ky#0, bge#0: From Eq.(8) follows (5/8)=0 and
thus Eq.(9) reduces tqy|8)=0.

(i) ky#0, bgy=0: From Eq.(8) follows (8| 8)=0. Equa-
tions (10) and(11) reduce to

—ky(8|a)—ka(b3)*(¥|B)=0,
—kqbgy( 8] a) +kib3y(v|B)=0.

This implies{8|a)=0 and(y|8)=0.
(i) ky=0, byp#0: From Egs.(12) and (9) follows

where|a), |8), |v), and|é8) are, in general, unnormalized (8|8)=0 and(y|B)=0.
and nonorthogonal states in the Hilbert space of the first (i) k,=0, bs;=0: The basis statefbs) and |b,) are

qubit.
According to Lemma 1, without loss of generalifty;)

|11) and|01), i.e.,|1) has the factof1) in the third position.
For the first three casgs’|8)=0 and(y|B8)=0 implies

and|b3) can be assumed to be product states. Since a Iocgl,at|y> and| &) are linearly dependent ¢B8)=0. Both re-

unitary transformation of &C yields anotheiQC with same
parameters, without loss of generaliby) =|00) can be cho-
sen. At least one factor of the product stHig), say the first
one, has to bél) since(b,|b3)=0.
Therefore, the orthonormal badishas the form
|b1)={00),
|b2) =k1|01) — kb3 10) + kob3g 1),
|b3) =3 10) + b3y 11),
|bg)=—K3|01) — ki b3 10) + K1 b3 11),

with |kq|2+|k,|2=1 and|bzg?+ |bsy)2=1. The code words
are of the form

|0)=|@)|00)+ k| B)[01) — kob3| )| 10) + k,b3d B)|11)
|1)=—k3[6)|01) + bgg )| 10) — KT b3y| 6)| 10) + bgy| )| 11)
+k¥ b, 6)12). (7

If k,=0 the stat¢0) would have the factd0) at the second

sults in a factorization of the code. Thus, for all cases the
code can be factored and thus reduced to a code of length 2
which contradicts Theorem 2.

IV. QUANTUM BCH CODES

In principle, every quantum error-correcting code applies
for the quantum erasure channel sincé arror-correcting
code is a 2 erasure-correcting code. But even for classical
codes, error correction is a hard td€23]. The same is true
for the correction of erasures.

But for some codes there are efficient algorithms to cor-
rect erasures and errors. Using the algorithm of Berlekamp
and Massey[24] for decoding binary BCH codes with de-
signed distancelzcy, v erasures and errors can be cor-
rected provided that + 2t <dgcy -

In this section we present a construction of quantum
error-correcting codes based on certain binary BCH codes
that can be decoded efficiently using the algorithm of Berle-
kamp and Massey. In a recent papg4] the termquantum
BCH codeis used for codes derived from BCH codes over
GF(4). This definition is more general than ours since every
cyclic code overGF(2) is a subcode of a cyclic code over
GF(4). But a BCHcode overGF(4) need not be a binary

position and a code of length 2 would exist. Therefore, wesCH code and thus correction of erasures for the codes de-

havek,#0.
From Egs.(4) and (7) we obtain the conditions

0=(1|P{|0)= —kikx( 3| B), ®)

0=(1|P5|0) =Ko(b%) X 7| B) — kikabihai( 51 8), (9)

fined in[14] is not straightforward.

The construction of quantum codes from classical codes is
based on the following theorefi2].

Theorem 4 Given two classical binary error-correcting
codesC;=[N,K,,d;] andC,=[N,K,,d,] such thatC; con-
tains the dual of,, i.e.,C;<C;, a quantum error-correcting
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code OC=[[N,K;—(N—K,),min(d;,d,)]] exists. where Z,={0, ... N—11\Z,. A cyclic codeC is weakly
HereC=[N,K,d] denotes a classical binary linear error- self-dual if and only if the defining séi contains that of its
correcting code of lengtiN, dimensionK, and minimum  dual, i.e.,Z.. CZ; or, equivalently Z,. N Z,= .
distance d; QC=[[N,K,d]] denotes a quantum error- For the QBCH codes, a binary BCH codewith C*
correcting code withN qubits that encode& qubits and  weakly self-dual is needed. Therefore, the condition(fas
allows correction of arbitrary errors of at ledastd/2 qubits.
Decoding ofQC is based or(classical decoding algorithms U Ci=Z,CZpn= U C_j= U C_;.
for C; andC,. iel; ieZ; jee
We consider the special case whefe=C,=C. Then
C-<Cis required, i. e.C* has to be a weakly self-dual code Thus Z, must not contain bott€; and C_;. In particular,
and an efficient decoding algorithm f6ris needed. For the Z, must not contain cyclotomic cosets wig)=C_; .
construction of quantum BCH code§,is chosen to be a The following lemma summarizes the preceding.
binary BCH code withC* weakly self-dual. Lemma 2 (BCH codes for QBCH coddsgt C be a binary
Definition 1 (quantum BCH codgsLet C be a binary BCH code of lengthN and defining sef, such that
BCH code withC* weakly self-dual. The states of the quan-
tum BCH(QBCH) code code are givefup to normalizatioh

by Vi:[ieZ;~(—imoN) & Z;].
Then the dual codé* is weakly self-dual and a QBCH code
A 2 |c+v) for veClC . can be constructed.
ceCt

In the remainder of this section we show how to construct V. CONCLUSION

the BCH codes needed for QBCH codes. First we recall e conclude by noting that finding efficient codes for
some properties of BCH codé®r proofs and details see, for restricted error models is relevant for proof-of-principle
example[25]). demonstrations of quantum error correction in the near fu-
A cyclic code of lengttN is defined by the set of roots of ture. The first prototype quantum computers will presumably
its generator polynomial. The roots are distinct powers of dave on|y a few qubits and will not be powerfu| enough to
primitive Nth root . Equivalently, the code corresponds jmplement the most general error correction schemes. For
to the set of exponents of the roots of its generator polyexample, a simplified demonstration of quantum error cor-
nomial, thedefining setZ.. For binary cyclic codes the de- rection could consist in deliberately inducing an error in a

fining set is a union of cyclotomic cosetsC;:  known qubit. In this case the QEC error model applies.
={i 2modN:k=0,1,2, .. }. For the construction of a bi-

nary BCH code with designed distandgcy, Z. is chosen as

Io=CyUCpi1U--- UCb+dBCH—2’ i.e., the union of cyclo- ACKNOWLEDGMENTS
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