ERATO Conference on Quantum Information Sciences

Tokyo, September 1-5, 2004

On SIC-POVMs and MUBs in Dimension 6

quant-ph/0406175

Markus Grassl

Arbeitsgruppe *Quantum Computing*, Prof. Beth Institut für Algorithmen und Kognitive Systeme Fakultät für Informatik, Universität Karlsruhe Germany

http://iaks-www.ira.uka.de/QIV

Part of this work was supported by Landesstiftung Baden-Württemberg gGmbH (AZ 1.1322.01)

Identifying Quantum States

General Problem:

What is the best way to identify an arbitrary unknown quantum state ρ in a d-dimensional Hilbert space?

- ρ is a Hermitian matrix $\implies d^2 1$ real parameters
- ullet one von Neumann measurement provides d-1 independent parameters
 - \implies at least d+1 different measurements
- general measurements (POVMs)
 ⇒ at least d² POVM elements
- goal: "maximal independence" of the measurement results

Mutually Unbiased Bases (MUBs)

- ullet orthogonal bases $\mathcal{B}^j:=\{|\psi_k^j\rangle:k=1,\ldots,d\}\subset\mathbb{C}^d$
- basis states are "mutually unbiased":

$$|\langle \psi_k^j | \psi_m^l \rangle|^2 = \left\{ egin{array}{ll} 1/d & \mbox{for } j
eq l, \ \delta_{k,m} & \mbox{for } j = l. \end{array}
ight.$$

- at most d+1 MUBs in dimension d
- ullet constructions for d+1 MUBs only known for prime powers $d=p^e$
- lower bound [Klappenecker & Rötteler, quant-ph/0309120]:

$$N(m \cdot n) \ge \min\{N(m), N(n)\} \ge 3$$

Symmetric Informationally Complete POVMs

[J. M. Renes, R. Blume-Kohout, A. J. Scott, & C. M. Caves, quant-ph/0310075]

- POVM with d^2 rank-one elements $E_j = \Pi_j/d$ with $\Pi_j = |\phi_j\rangle\langle\phi_j|$
- The d^2 elements form a basis of $\mathbb{C}^{d \times d}$. \Longrightarrow "informationally complete"
- expectation values $p_j = \operatorname{tr}(\rho E_j)$ "maximally independent":

$$\operatorname{tr}(\Pi_j\Pi_k) = |\langle \phi_j | \phi_k \rangle|^2 = \frac{1}{d+1}$$
 for $j \neq k$,

⇒ "symmetric"

- algebraic solutions for dimension d = 2, 3, 4, 5, 8 [e.g. Zauner 99]
- numerical solutions for $d \le 45$ [Renes et al. 03]

Analogies to Finite Geometry

[W. K. Wootters, quant-ph/0406032]

affine planes	MUBs	SIC-POVMs
d^2 points	d^2 Wigner operators	d^2 states
d(d+1) lines	d(d+1) states	$d(d+1)$ operators " B_{α} "
lines are	states are	different cases
parallel, or	orthogonal	for trace inner products
intersect in one point	• unbiased	of B_lpha and B_eta
only known to exists	constructions for	conjectured:
for prime powers	prime powers	all dimensions

Zauner's Conjecture

[G. Zauner, Dissertation, Universität Wien, 1999]

Conjecture:

For every dimension $d \ge 2$ there exists a SIC-POVM whose elements are the orbit of a rank-one operator E_0 under the Heisenberg group H_d . What is more, E_0 commutes with an element T of the Jacobi group J_d . The action of T on H_d modulo the center has order three.

support for this conjecture:

- algebraic solutions by [Zauner] for d = 2, 3, 4, 5 (only prime powers)
- numerical evidence by [Renes et al.] for $d \le 45$

Weyl-Heisenberg Group

Generators:

$$H_d := \langle X, Z \rangle$$

where
$$X:=\sum\limits_{j=0}^{n-1}|j+1\rangle\langle j|$$
 and $Z:=\sum\limits_{j=0}^{n-1}\omega_d^j|j\rangle\langle j|$ $(\omega_d:=\exp(2\pi i/d))$

• Relations:

$$\left(\omega_d^c X^a Z^b\right) \left(\omega_d^{c'} X^{a'} Z^{b'}\right) = \omega_d^{a'b-b'a} \left(\omega_d^{c'} X^{a'} Z^{b'}\right) \left(\omega_d^c X^a Z^b\right)$$

• Basis:

$$H_d / \zeta(H_d) = \{X^a Z^b : a, b \in \{0, \dots, d-1\}\} \cong \mathbb{Z}_d \times \mathbb{Z}_d$$

trace-orthogonal basis of all $d \times d$ matrices

Jacobi Group (or Clifford Group)

• automorphism group of the Heisenberg group H_d , i.e.

$$\forall T \in J_d : T^{\dagger} H_d T = H_d$$

• the action of J_d on H_d modulo phases corresponds to the symplectic group $SL(2,\mathbb{Z}_d)$, i.e.

$$T^\dagger X^a Z^b T = \omega_d^c X^{a'} Z^{b'}$$
 where $inom{a'}{b'} = ilde{T} inom{a}{b}$, $ilde{T} \in SL(2, \mathbb{Z}_d)$

• J_d is generated by the discrete Fourier transform and a diagonal matrix "with quadratic phases" (depends on d odd or even)

SIC-POVM in Dimension 6

Ansatz 1:

SIC-POVM that is the orbit under H_d , i.e.,

$$|\phi_{a,b}\rangle := X^a Z^b |\phi_0\rangle \tag{1}$$

$$\langle \phi_{a,b} | \phi_{a',b'} \rangle = \begin{cases} 1 & \text{for } (a,b) = (a',b'), \\ 1/(d+1) & \text{for } (a,b) \neq (a',b') \end{cases}$$
 (2)

$$|\phi_0\rangle = \sum_{j=0}^{d-1} (x_{2j} + ix_{2j+1})|b_j\rangle,$$

 (x_0,\ldots,x_{2d-1}) are real variables, $x_1=0$

 \Longrightarrow polynomial equations for 2d-1 variables, but too complicated for d=6

SIC-POVM in Dimension 6 (cntd.)

Ansatz 2:

SIC-POVM that is the orbit under H_d , additionally: $|\phi_0\rangle$ lies in a (degenerate) ℓ -dimensional eigenspace of some $T\in J_d$

$$|\phi_0\rangle = \sum_{j=0}^{\ell-1} (x_{2j} + ix_{2j+1})|b_j\rangle,$$

here: $\ell = 3$, i.e., only 5 variables

- ⇒ algebraic solution computed using Magma
 - 144 complex solutions for the real variables
 only the real solutions are valid
 - in total 96 "different" such SIC-POVMs, but all these SIC-POVMs are related by complex conjugation or a global basis change

MUBs and Unitary Error Bases

[S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, & F. Vatan, quant-ph/0103162]

Theorem:

There exists k MUBs in dimension d if and only if there are k(d-1) traceless, mutually orthogonal matrices $U_{j,t} \in U(d,\mathbb{C})$ that can be partitioned into k sets of commuting matrices:

$$\mathcal{B} = \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_k$$
, where $\mathcal{C}_j \cap \mathcal{C}_l = \emptyset$ and $|\mathcal{C}_j| = k - 1$

Each of the k orthogonal bases are the common eigenstates of the commuting matrices in one class C_j .

Ansatz:

Use the matrices X^aZ^b of the Weyl-Heisenberg group.

Three MUBs in any Dimension

consider the operators

$$\{X^a: a = 1, \dots, d-1\}, \quad \{Z^a: a = 1, \dots, d-1\}, \quad \{X^aZ^a: a = 1, \dots, d-1\}$$

- all matrices are mutually orthogonal, the sets are disjoint, the matrices within each set commute
- geometric picture:

 \Longrightarrow the eigenvectors of X, Z, and XZ form three MUBs in any dimension

More than 3 MUBs in Dimension 6?

Ansatz 1:

- start with the eigenvectors of X, Z, and XZ
- search for a vector $|\psi\rangle$ that is unbiased w.r.t. these 18 vectors
- ⇒ The system of polynomial equations has no solution.

Ansatz 2:

- start with the eigenvectors of X and Z
- ullet search for a vector $|\psi\rangle$ that is unbiased w.r.t. these 12 vectors
- w.l.o.g, the first coordinate is $1/\sqrt{6}$
- \Longrightarrow There are exactly 48 solutions for $|\psi\rangle$.

The 48 Solutions

- Each solution is unbiased with respect to either 4 or 12 other vectors.
- There are 16 subsets of size 6 that are an orthonormal bases.
- No vector is unbiased with respect to one of the 16 bases.

Consequence:

Starting with the eigenvectors of X and Z, we get no more than 3 MUBs in dimension 6.

action of the Jacobi group & geometric interpretation ⇒:

Corollary:

Starting with the eigenvectors of "two lines that intersect only in the origin", we get no more than 3 MUBs in dimension 6.

Why Dimension 6?

- $6 = 2 \cdot 3$ is the smallest non-prime power.
- There is no affine plane of order six.
- There are no two mutually orthogonal Latin squares (MOLS).
 This could imply that there a no more then 3 MUBs.
- There are no more than 3 MUBs that are related to the Weyl-Heisenberg group respectively $\mathbb{Z}_6 \times \mathbb{Z}_6$.

but: A SIC-POVM in dimension 6 exists!

Conclusion/Outlook

- First proof that there is a SIC-POVM in a non-prime-power dimension. (Also algebraic solutions for d = 7, 8, 9, but not yet for d = 10.)
- The connection to finite geometry is too week to exclude the existence of a SIC-POVM in dimension 6.
- results on "unextendable" MUBs

still open: Are there more than 3 MUBs in dimension 6? other dimensions:

- d=4: The eigenvectors of X, Z, and XZ form a set of three unextendable MUBs (thanks to W. Wootters for asking the question about d=4).
- d = 9: 4 MUBs from the eigenvectors of X, Z, XZ, and XZ^{-1}

$${X^a: a = 1, \dots, d-1}$$
 ${Z^a: a = 1, \dots, d-1}$

$$\{Z^a: a = 1, \dots, d-1\}$$

$$\{X^a Z^a : a = 1, \dots, d-1\}$$

$$\{X^a Z^a : a = 1, \dots, d - 1\}$$
 $\{X^a Z^{-a} : a = 1, \dots, d - 1\}$

SIC-POVM for d=6

$$v_{1} := \left(\left(336(\sqrt{7} - \sqrt{21})\theta_{1} - 42\sqrt{21} - 42\sqrt{3} - 126\sqrt{7} - 378 \right) \theta_{2}^{2} + \left(56(3\sqrt{7} - 2\sqrt{3} + 3)\theta_{1} + 3\sqrt{21} - 21\sqrt{3} + 9\sqrt{7} + 63 \right) \theta_{2} + \left(168 - 24\sqrt{21} - 56\sqrt{3} + 24\sqrt{7} \right) \theta_{1} + 6\sqrt{21} + 18\sqrt{3} - 6\sqrt{7} - 6 \right) i + \left(336(\sqrt{7} + \sqrt{21})\theta_{1} + 42\sqrt{21} - 42\sqrt{3} - 126\sqrt{7} + 378 \right) \theta_{2}^{2} + \left(56(3\sqrt{7} - 2\sqrt{3} - 3)\theta_{1} - 3\sqrt{21} - 21\sqrt{3} + 9\sqrt{7} - 63 \right) \theta_{2} + \left(24\sqrt{21} - 56\sqrt{3} + 24\sqrt{7} - 168 \right) \theta_{1} - 6\sqrt{21} + 18\sqrt{3} - 6\sqrt{7} + 6,$$

$$v_{2} := \left(\left(672(\sqrt{7} - \sqrt{21})\theta_{1} - 168\sqrt{3} + 504 \right) \theta_{2}^{2} + \left(28(3\sqrt{21} + 5\sqrt{3} - 3\sqrt{7} - 15)\theta_{1} - 42\sqrt{3} + 126 \right) \theta_{2} + \left(336 - 48\sqrt{21} - 112\sqrt{3} + 48\sqrt{7} \right) \theta_{1} - 12\sqrt{21} - 12\sqrt{3} + 12\sqrt{7} + 36 \right) i - \left(84\sqrt{21} - 252\sqrt{3} - 252\sqrt{7} + 252 \right) \theta_{2}^{2} + \left(84(\sqrt{21} + \sqrt{3} - 3\sqrt{7} - 1)\theta_{1} - 6\sqrt{21} + 18\sqrt{7} \right) \theta_{2} - 24\sqrt{3} + 24,$$

$$v_{3} := 6(\sqrt{7} - \sqrt{3}) i + 6\sqrt{21} + 12\sqrt{3} - 12\sqrt{7} - 18$$

SIC-POVM for d=6 (cntd.)

$$v_4 := \left(\left(336(\sqrt{7} - \sqrt{21})\theta_1 + 126\sqrt{21} - 42\sqrt{3} - 126\sqrt{7} + 126 \right) \theta_2^2 + \left(56(6 - 3\sqrt{21} - 2\sqrt{3} + 3\sqrt{7})\theta_1 - 9\sqrt{21} - 21\sqrt{3} + 9\sqrt{7} + 63 \right) \theta_2 + \left((168 - 24\sqrt{21} - 56\sqrt{3} + 24\sqrt{7})\theta_1 + 6\sqrt{21} + 18\sqrt{3} - 6\sqrt{7} - 54 \right) \right) i + \left(336(\sqrt{21} - 3\sqrt{7})\theta_1 + 42\sqrt{21} - 378\sqrt{3} - 126\sqrt{7} + 378 \right) \theta_2^2 + \left(168(\sqrt{3} - 1)\theta_1 - 3\sqrt{21} + 63\sqrt{3} + 9\sqrt{7} - 63 \right) \theta_2 + (24\sqrt{21} + 168\sqrt{3} - 72\sqrt{7} - 168)\theta_1 + 6 - 6\sqrt{21} - 6\sqrt{3} + 18\sqrt{7},$$

$$v_5 := \left(\left(672\sqrt{7}\theta_1 + 84\sqrt{21} - 168\sqrt{3} + 252 \right) \theta_2^2 - \left((84\sqrt{21} - 140\sqrt{3} + 84\sqrt{7} - 84)\theta_1 - 6\sqrt{21} + 42\sqrt{3} \right) \theta_2 - (112\sqrt{3}\theta_1 - 48\sqrt{7}\theta_1 + 12\sqrt{3} - 12\sqrt{7} + 24) \right) i + (672\sqrt{7}\theta_1 - 84\sqrt{21} - 168\sqrt{3} - 252)\theta_2^2 + \left((84\sqrt{21} + 140\sqrt{3} - 84\sqrt{7} - 84)\theta_1 - 6\sqrt{21} - 42\sqrt{3} \right) \theta_2 - 112\sqrt{3}\theta_1 + 48\sqrt{7}\theta_1 - 12\sqrt{3} + 12\sqrt{7} + 24,$$

$$v_6 := 6(\sqrt{7} - \sqrt{3})i - 6\sqrt{21} + 18.$$